Nuprl Lemma : no_repeats_member

[T:Type]. ∀L:T List. ∀x:T.  (x ∈ L)  (x ∈L) supposing no_repeats(T;L)


Proof




Definitions occuring in Statement :  l_member!: (x ∈l) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: implies:  Q so_apply: x[s] not: ¬A false: False iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) or: P ∨ Q cand: c∧ B guard: {T}
Lemmas referenced :  list_induction all_wf isect_wf no_repeats_wf l_member_wf l_member!_wf list_wf no_repeats_witness nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse cons_wf cons_member cons_member! no_repeats_cons not_wf equal_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis functionEquality independent_functionElimination because_Cache rename independent_isectElimination equalityTransitivity equalitySymmetry voidElimination dependent_functionElimination universeEquality productElimination unionElimination inlFormation independent_pairFormation productEquality inrFormation hyp_replacement dependent_set_memberEquality applyLambdaEquality setElimination

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    (x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}!  L)  supposing  no\_repeats(T;L)



Date html generated: 2017_04_17-AM-07_50_29
Last ObjectModification: 2017_02_27-PM-04_23_34

Theory : list_1


Home Index