Nuprl Lemma : no_repeats_member
∀[T:Type]. ∀L:T List. ∀x:T.  (x ∈ L) 
⇒ (x ∈! L) supposing no_repeats(T;L)
Proof
Definitions occuring in Statement : 
l_member!: (x ∈! l)
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
not: ¬A
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
or: P ∨ Q
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
list_induction, 
all_wf, 
isect_wf, 
no_repeats_wf, 
l_member_wf, 
l_member!_wf, 
list_wf, 
no_repeats_witness, 
nil_wf, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
cons_wf, 
cons_member, 
cons_member!, 
no_repeats_cons, 
not_wf, 
equal_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
functionEquality, 
independent_functionElimination, 
because_Cache, 
rename, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
dependent_functionElimination, 
universeEquality, 
productElimination, 
unionElimination, 
inlFormation, 
independent_pairFormation, 
productEquality, 
inrFormation, 
hyp_replacement, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x:T.    (x  \mmember{}  L)  {}\mRightarrow{}  (x  \mmember{}!  L)  supposing  no\_repeats(T;L)
Date html generated:
2017_04_17-AM-07_50_29
Last ObjectModification:
2017_02_27-PM-04_23_34
Theory : list_1
Home
Index