Nuprl Lemma : null-upto

[n:ℕ]. (null(upto(n)) (n =z 0))


Proof




Definitions occuring in Statement :  upto: upto(n) null: null(as) nat: eq_int: (i =z j) uall: [x:A]. B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a squash: T prop: nat: subtype_rel: A ⊆B top: Top true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q sq_type: SQType(T) all: x:A. B[x]
Lemmas referenced :  upto_is_nil subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf null-length-zero upto_wf subtype_rel_list int_seg_wf top_wf eq_int_wf iff_weakening_equal length_upto nat_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation thin instantiate sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality setElimination rename because_Cache natural_numberEquality isect_memberEquality voidElimination voidEquality sqequalRule imageMemberEquality baseClosed productElimination independent_functionElimination dependent_functionElimination sqequalAxiom

Latex:
\mforall{}[n:\mBbbN{}].  (null(upto(n))  \msim{}  (n  =\msubz{}  0))



Date html generated: 2017_04_17-AM-07_57_15
Last ObjectModification: 2017_02_27-PM-04_27_48

Theory : list_1


Home Index