Nuprl Lemma : null-upto
∀[n:ℕ]. (null(upto(n)) ~ (n =z 0))
Proof
Definitions occuring in Statement : 
upto: upto(n)
, 
null: null(as)
, 
nat: ℕ
, 
eq_int: (i =z j)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
Lemmas referenced : 
upto_is_nil, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
null-length-zero, 
upto_wf, 
subtype_rel_list, 
int_seg_wf, 
top_wf, 
eq_int_wf, 
iff_weakening_equal, 
length_upto, 
nat_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
thin, 
instantiate, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
setElimination, 
rename, 
because_Cache, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[n:\mBbbN{}].  (null(upto(n))  \msim{}  (n  =\msubz{}  0))
Date html generated:
2017_04_17-AM-07_57_15
Last ObjectModification:
2017_02_27-PM-04_27_48
Theory : list_1
Home
Index