Nuprl Lemma : upto_is_nil

[n:ℕ]. uiff(upto(n) [];n 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  upto: upto(n) nil: [] nat: uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T upto: upto(n) uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] prop: implies:  Q iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top le: A ≤ B
Lemmas referenced :  set_subtype_base le_wf int_subtype_base equal-wf-T-base nat_wf iff_weakening_uiff sqequal-wf-base from-upto-is-nil uiff_wf nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__le less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality axiomEquality hypothesis sqequalIntensionalEquality baseApply closedConclusion baseClosed applyEquality extract_by_obid intEquality lambdaEquality natural_numberEquality independent_isectElimination equalityTransitivity equalitySymmetry sqequalAxiom setElimination rename addLevel independent_pairFormation independent_functionElimination because_Cache cumulativity instantiate dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[n:\mBbbN{}].  uiff(upto(n)  \msim{}  [];n  =  0)



Date html generated: 2017_04_17-AM-07_57_03
Last ObjectModification: 2017_02_27-PM-04_28_11

Theory : list_1


Home Index