Nuprl Lemma : orbit-decomp2

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   finite-type(T)
   (∀f:T ⟶ T
        ∃orbits:T List List
         ((∀o∈orbits.orbit(T;f;o))
         ∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
         ∧ (∀o1,o2∈orbits.  l_disjoint(T;o1;o2))
         ∧ no_repeats(T List;orbits)) 
        supposing Inj(T;T;f)))


Proof




Definitions occuring in Statement :  orbit: orbit(T;f;L) finite-type: finite-type(T) pairwise: (∀x,y∈L.  P[x; y]) l_disjoint: l_disjoint(T;l1;l2) l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) l_member: (x ∈ l) list: List inject: Inj(A;B;f) decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] uimplies: supposing a inject: Inj(A;B;f) prop: exists: x:A. B[x] and: P ∧ Q cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] l_all: (∀x∈L.P[x]) orbit: orbit(T;f;L) pairwise: (∀x,y∈L.  P[x; y]) no_repeats: no_repeats(T;l) not: ¬A false: False nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q less_than: a < b less_than': less_than'(a;b) cons: [a b] l_disjoint: l_disjoint(T;l1;l2)
Lemmas referenced :  orbit-decomp equal_wf l_all_wf list_wf l_member_wf orbit_wf all_wf l_exists_wf pairwise_wf2 l_disjoint_wf no_repeats_wf inject_wf finite-type_wf decidable_wf int_seg_wf length_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf not_wf nat_wf less_than_wf decidable__lt lelt_wf squash_wf true_wf iff_weakening_equal intformless_wf intformeq_wf int_formula_prop_less_lemma int_formula_prop_eq_lemma decidable__equal_int le_wf equal-wf-base int_subtype_base list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma cons_wf cons_member
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination dependent_functionElimination sqequalRule lambdaEquality axiomEquality cumulativity applyEquality functionExtensionality rename independent_isectElimination productElimination dependent_pairFormation independent_pairFormation productEquality setElimination because_Cache setEquality universeEquality instantiate functionEquality natural_numberEquality voidElimination unionElimination int_eqEquality intEquality isect_memberEquality voidEquality computeAll equalityTransitivity equalitySymmetry dependent_set_memberEquality imageElimination imageMemberEquality baseClosed promote_hyp hypothesis_subsumption addEquality inlFormation

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  finite-type(T)
    {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T
                \mexists{}orbits:T  List  List
                  ((\mforall{}o\mmember{}orbits.orbit(T;f;o))
                  \mwedge{}  (\mforall{}a:T.  (\mexists{}orbit\mmember{}orbits.  (a  \mmember{}  orbit)))
                  \mwedge{}  (\mforall{}o1,o2\mmember{}orbits.    l\_disjoint(T;o1;o2))
                  \mwedge{}  no\_repeats(T  List;orbits)) 
                supposing  Inj(T;T;f)))



Date html generated: 2017_04_17-AM-08_16_45
Last ObjectModification: 2017_02_27-PM-04_41_07

Theory : list_1


Home Index