Nuprl Lemma : orbit-decomp2
∀[T:Type]
  ((∀x,y:T.  Dec(x = y ∈ T))
  
⇒ finite-type(T)
  
⇒ (∀f:T ⟶ T
        ∃orbits:T List List
         ((∀o∈orbits.orbit(T;f;o))
         ∧ (∀a:T. (∃orbit∈orbits. (a ∈ orbit)))
         ∧ (∀o1,o2∈orbits.  l_disjoint(T;o1;o2))
         ∧ no_repeats(T List;orbits)) 
        supposing Inj(T;T;f)))
Proof
Definitions occuring in Statement : 
orbit: orbit(T;f;L)
, 
finite-type: finite-type(T)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_disjoint: l_disjoint(T;l1;l2)
, 
l_exists: (∃x∈L. P[x])
, 
l_all: (∀x∈L.P[x])
, 
no_repeats: no_repeats(T;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
inject: Inj(A;B;f)
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
inject: Inj(A;B;f)
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
l_all: (∀x∈L.P[x])
, 
orbit: orbit(T;f;L)
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
no_repeats: no_repeats(T;l)
, 
not: ¬A
, 
false: False
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
l_disjoint: l_disjoint(T;l1;l2)
Lemmas referenced : 
orbit-decomp, 
equal_wf, 
l_all_wf, 
list_wf, 
l_member_wf, 
orbit_wf, 
all_wf, 
l_exists_wf, 
pairwise_wf2, 
l_disjoint_wf, 
no_repeats_wf, 
inject_wf, 
finite-type_wf, 
decidable_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
decidable__lt, 
lelt_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
intformless_wf, 
intformeq_wf, 
int_formula_prop_less_lemma, 
int_formula_prop_eq_lemma, 
decidable__equal_int, 
le_wf, 
equal-wf-base, 
int_subtype_base, 
list-cases, 
length_of_nil_lemma, 
nil_wf, 
product_subtype_list, 
length_of_cons_lemma, 
cons_wf, 
cons_member
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
axiomEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
rename, 
independent_isectElimination, 
productElimination, 
dependent_pairFormation, 
independent_pairFormation, 
productEquality, 
setElimination, 
because_Cache, 
setEquality, 
universeEquality, 
instantiate, 
functionEquality, 
natural_numberEquality, 
voidElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
hypothesis_subsumption, 
addEquality, 
inlFormation
Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  finite-type(T)
    {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T
                \mexists{}orbits:T  List  List
                  ((\mforall{}o\mmember{}orbits.orbit(T;f;o))
                  \mwedge{}  (\mforall{}a:T.  (\mexists{}orbit\mmember{}orbits.  (a  \mmember{}  orbit)))
                  \mwedge{}  (\mforall{}o1,o2\mmember{}orbits.    l\_disjoint(T;o1;o2))
                  \mwedge{}  no\_repeats(T  List;orbits)) 
                supposing  Inj(T;T;f)))
Date html generated:
2017_04_17-AM-08_16_45
Last ObjectModification:
2017_02_27-PM-04_41_07
Theory : list_1
Home
Index