Nuprl Lemma : pairwise-append
∀[T:Type]
  ∀L1,L2:T List.
    ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈L1 @ L2.  P[x;y]) 
⇐⇒ ((∀x,y∈L1.  P[x;y]) ∧ (∀x,y∈L2.  P[x;y])) ∧ (∀x∈L1.(∀y∈L2.P[x;y])))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_all: (∀x∈L.P[x])
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
uall_wf, 
iff_wf, 
pairwise_wf2, 
append_wf, 
l_all_wf, 
l_member_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
nil_wf, 
pairwise-nil, 
l_all_nil, 
l_all_wf_nil, 
l_all_cons, 
cons_wf, 
pairwise-cons, 
l_all_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
universeEquality, 
functionEquality, 
because_Cache, 
productEquality, 
productElimination, 
setElimination, 
rename, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
natural_numberEquality, 
addLevel, 
impliesFunctionality, 
andLevelFunctionality
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2:T  List.
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y\mmember{}L1  @  L2.    P[x;y])
            \mLeftarrow{}{}\mRightarrow{}  ((\mforall{}x,y\mmember{}L1.    P[x;y])  \mwedge{}  (\mforall{}x,y\mmember{}L2.    P[x;y]))  \mwedge{}  (\mforall{}x\mmember{}L1.(\mforall{}y\mmember{}L2.P[x;y])))
Date html generated:
2016_05_14-PM-01_49_55
Last ObjectModification:
2015_12_26-PM-05_37_30
Theory : list_1
Home
Index