Nuprl Lemma : pairwise-append

[T:Type]
  ∀L1,L2:T List.
    ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈L1 L2.  P[x;y]) ⇐⇒ ((∀x,y∈L1.  P[x;y]) ∧ (∀x,y∈L2.  P[x;y])) ∧ (∀x∈L1.(∀y∈L2.P[x;y])))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) l_all: (∀x∈L.P[x]) append: as bs list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] and: P ∧ Q so_apply: x[s] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] iff: ⇐⇒ Q rev_implies:  Q true: True
Lemmas referenced :  list_induction all_wf list_wf uall_wf iff_wf pairwise_wf2 append_wf l_all_wf l_member_wf list_ind_nil_lemma list_ind_cons_lemma nil_wf pairwise-nil l_all_nil l_all_wf_nil l_all_cons cons_wf pairwise-cons l_all_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality hypothesis applyEquality universeEquality functionEquality because_Cache productEquality productElimination setElimination rename setEquality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation natural_numberEquality addLevel impliesFunctionality andLevelFunctionality

Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2:T  List.
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}']
            ((\mforall{}x,y\mmember{}L1  @  L2.    P[x;y])
            \mLeftarrow{}{}\mRightarrow{}  ((\mforall{}x,y\mmember{}L1.    P[x;y])  \mwedge{}  (\mforall{}x,y\mmember{}L2.    P[x;y]))  \mwedge{}  (\mforall{}x\mmember{}L1.(\mforall{}y\mmember{}L2.P[x;y])))



Date html generated: 2016_05_14-PM-01_49_55
Last ObjectModification: 2015_12_26-PM-05_37_30

Theory : list_1


Home Index