Nuprl Lemma : pairwise-cons
∀[T:Type]. ∀x:T. ∀L:T List.  ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈[x / L].  P[x;y]) 
⇐⇒ (∀x,y∈L.  P[x;y]) ∧ (∀y∈L.P[x;y]))
Proof
Definitions occuring in Statement : 
pairwise: (∀x,y∈L.  P[x; y])
, 
l_all: (∀x∈L.P[x])
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
pairwise: (∀x,y∈L.  P[x; y])
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
lelt: i ≤ j < k
, 
top: Top
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
subtract: n - m
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
l_all: (∀x∈L.P[x])
, 
less_than': less_than'(a;b)
, 
select: L[n]
, 
cons: [a / b]
, 
sq_type: SQType(T)
Lemmas referenced : 
int_formula_prop_eq_lemma, 
intformeq_wf, 
subtract-add-cancel, 
int_subtype_base, 
subtype_base_sq, 
decidable__equal_int, 
select-cons-tl, 
false_wf, 
select_cons_tl_sq, 
add-subtract-cancel, 
lelt_wf, 
int_term_value_add_lemma, 
itermAdd_wf, 
decidable__lt, 
non_neg_length, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
itermSubtract_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
subtract_wf, 
decidable__le, 
int_seg_properties, 
length_of_cons_lemma, 
add-member-int_seg2, 
list_wf, 
l_member_wf, 
l_all_wf, 
and_wf, 
cons_wf, 
pairwise_wf2, 
length_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
instantiate, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
productElimination, 
setEquality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
addEquality, 
imageElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L:T  List.
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}'].  ((\mforall{}x,y\mmember{}[x  /  L].    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y\mmember{}L.    P[x;y])  \mwedge{}  (\mforall{}y\mmember{}L.P[x;y]))
Date html generated:
2016_05_14-PM-01_49_46
Last ObjectModification:
2016_01_15-AM-08_19_22
Theory : list_1
Home
Index