Nuprl Lemma : pairwise-cons

[T:Type]. ∀x:T. ∀L:T List.  ∀[P:T ⟶ T ⟶ ℙ']. ((∀x,y∈[x L].  P[x;y]) ⇐⇒ (∀x,y∈L.  P[x;y]) ∧ (∀y∈L.P[x;y]))


Proof




Definitions occuring in Statement :  pairwise: (∀x,y∈L.  P[x; y]) l_all: (∀x∈L.P[x]) cons: [a b] list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q pairwise: (∀x,y∈L.  P[x; y]) member: t ∈ T int_seg: {i..j-} prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) uimplies: supposing a lelt: i ≤ j < k top: Top guard: {T} decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A subtract: m ge: i ≥  le: A ≤ B less_than: a < b squash: T l_all: (∀x∈L.P[x]) less_than': less_than'(a;b) select: L[n] cons: [a b] sq_type: SQType(T)
Lemmas referenced :  int_formula_prop_eq_lemma intformeq_wf subtract-add-cancel int_subtype_base subtype_base_sq decidable__equal_int select-cons-tl false_wf select_cons_tl_sq add-subtract-cancel lelt_wf int_term_value_add_lemma itermAdd_wf decidable__lt non_neg_length int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf itermSubtract_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt subtract_wf decidable__le int_seg_properties length_of_cons_lemma add-member-int_seg2 list_wf l_member_wf l_all_wf and_wf cons_wf pairwise_wf2 length_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution cut lemma_by_obid isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis instantiate cumulativity sqequalRule lambdaEquality applyEquality productElimination setEquality functionEquality universeEquality dependent_functionElimination because_Cache independent_isectElimination dependent_set_memberEquality isect_memberEquality voidElimination voidEquality unionElimination dependent_pairFormation int_eqEquality intEquality computeAll addEquality imageElimination independent_functionElimination equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type]
    \mforall{}x:T.  \mforall{}L:T  List.
        \mforall{}[P:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}'].  ((\mforall{}x,y\mmember{}[x  /  L].    P[x;y])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x,y\mmember{}L.    P[x;y])  \mwedge{}  (\mforall{}y\mmember{}L.P[x;y]))



Date html generated: 2016_05_14-PM-01_49_46
Last ObjectModification: 2016_01_15-AM-08_19_22

Theory : list_1


Home Index