Nuprl Lemma : permutation-contains

[A:Type]. ∀L1,L2:A List.  (permutation(A;L1;L2)  L2 ⊆ L1)


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) l_contains: A ⊆ B list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a permutation: permutation(T;L1;L2) exists: x:A. B[x] l_contains: A ⊆ B l_all: (∀x∈L.P[x]) and: P ∧ Q prop: squash: T int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  permutation-length equal_wf list_wf l_member_wf permute_list_select decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf iff_weakening_equal select_member int_seg_wf select_wf int_seg_properties decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma permute_list_length less_than_wf length_wf permutation_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis productElimination dependent_set_memberEquality because_Cache cumulativity equalityTransitivity equalitySymmetry applyEquality lambdaEquality imageElimination setElimination rename independent_pairFormation dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll imageMemberEquality baseClosed independent_functionElimination functionExtensionality hyp_replacement Error :applyLambdaEquality,  universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}L1,L2:A  List.    (permutation(A;L1;L2)  {}\mRightarrow{}  L2  \msubseteq{}  L1)



Date html generated: 2016_10_21-AM-10_17_29
Last ObjectModification: 2016_07_12-AM-05_32_58

Theory : list_1


Home Index