Nuprl Lemma : permutation-last

[A:Type]
  ∀x:A. ∀L1,L2:A List.
    (permutation(A;L1 [x];L2) ⇐⇒ ∃as,bs:A List. ((L2 (as [x bs]) ∈ (A List)) ∧ permutation(A;L1;as bs)))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q exists: x:A. B[x] squash: T true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  permutation_weakening permutation-rotate permutation_functionality_wrt_permutation permutation-cons2 permutation-cons list_ind_nil_lemma list_ind_cons_lemma equal_wf and_wf exists_wf iff_weakening_equal list_wf true_wf squash_wf nil_wf cons_wf append_wf permutation_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis productElimination applyEquality lambdaEquality imageElimination because_Cache equalityTransitivity equalitySymmetry natural_numberEquality sqequalRule imageMemberEquality baseClosed universeEquality independent_isectElimination independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[A:Type]
    \mforall{}x:A.  \mforall{}L1,L2:A  List.
        (permutation(A;L1  @  [x];L2)
        \mLeftarrow{}{}\mRightarrow{}  \mexists{}as,bs:A  List.  ((L2  =  (as  @  [x  /  bs]))  \mwedge{}  permutation(A;L1;as  @  bs)))



Date html generated: 2016_05_14-PM-02_32_11
Last ObjectModification: 2016_01_15-AM-07_45_19

Theory : list_1


Home Index