Nuprl Lemma : permutation-last
∀[A:Type]
  ∀x:A. ∀L1,L2:A List.
    (permutation(A;L1 @ [x];L2) 
⇐⇒ ∃as,bs:A List. ((L2 = (as @ [x / bs]) ∈ (A List)) ∧ permutation(A;L1;as @ bs)))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
permutation_weakening, 
permutation-rotate, 
permutation_functionality_wrt_permutation, 
permutation-cons2, 
permutation-cons, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
equal_wf, 
and_wf, 
exists_wf, 
iff_weakening_equal, 
list_wf, 
true_wf, 
squash_wf, 
nil_wf, 
cons_wf, 
append_wf, 
permutation_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}[A:Type]
    \mforall{}x:A.  \mforall{}L1,L2:A  List.
        (permutation(A;L1  @  [x];L2)
        \mLeftarrow{}{}\mRightarrow{}  \mexists{}as,bs:A  List.  ((L2  =  (as  @  [x  /  bs]))  \mwedge{}  permutation(A;L1;as  @  bs)))
Date html generated:
2016_05_14-PM-02_32_11
Last ObjectModification:
2016_01_15-AM-07_45_19
Theory : list_1
Home
Index