Nuprl Lemma : permute_list-identity

[T:Type]. ∀[L:T List].  ((L o λx.x) L ∈ (T List))


Proof




Definitions occuring in Statement :  permute_list: (L f) list: List uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a top: Top all: x:A. B[x] implies:  Q squash: T prop: nat: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_extensionality permute_list_wf int_seg_wf length_wf permute_list_length equal_wf squash_wf true_wf permute_list_select lelt_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf iff_weakening_equal less_than_wf nat_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity lambdaEquality natural_numberEquality hypothesis independent_isectElimination sqequalRule isect_memberEquality voidElimination voidEquality lambdaFormation applyEquality imageElimination equalityTransitivity equalitySymmetry because_Cache setElimination rename dependent_set_memberEquality independent_pairFormation productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll imageMemberEquality baseClosed universeEquality independent_functionElimination axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    ((L  o  \mlambda{}x.x)  =  L)



Date html generated: 2017_04_17-AM-08_09_46
Last ObjectModification: 2017_02_27-PM-04_37_28

Theory : list_1


Home Index