Nuprl Lemma : pigeon-hole-implies-ext

n:ℕ. ∀[m:ℕ]. ∀f:ℕn ⟶ ℕm. ∃i:ℕn. (∃j:ℕ[((f i) (f j) ∈ ℤ)]) supposing m < n


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T int_seg_decide: int_seg_decide(d;i;j) it: genrec-ap: genrec-ap pi1: fst(t) pigeon-hole-implies decidable__exists_int_seg decidable__equal_int any: any x decidable__int_equal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  pigeon-hole-implies lifting-strict-decide strict4-spread lifting-strict-callbyvalue strict4-decide lifting-strict-int_eq decidable__exists_int_seg decidable__equal_int decidable__int_equal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}[m:\mBbbN{}].  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m.  \mexists{}i:\mBbbN{}n.  (\mexists{}j:\mBbbN{}i  [((f  i)  =  (f  j))])  supposing  m  <  n



Date html generated: 2018_05_21-PM-00_38_56
Last ObjectModification: 2018_05_18-AM-08_16_16

Theory : list_1


Home Index