Nuprl Lemma : pigeon-hole-implies
∀n:ℕ. ∀[m:ℕ]. ∀f:ℕn ⟶ ℕm. ∃i:ℕn. (∃j:{ℕi| ((f i) = (f j) ∈ ℤ)}) supposing m < n
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
inject: Inj(A;B;f)
, 
le: A ≤ B
, 
less_than: a < b
, 
sq_exists: ∃x:{A| B[x]}
Lemmas referenced : 
member-less_than, 
decidable__exists_int_seg, 
exists_wf, 
int_seg_wf, 
equal_wf, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
lelt_wf, 
decidable__equal_int, 
pigeon-hole, 
less_than_wf, 
nat_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
sq_exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
instantiate, 
dependent_functionElimination, 
natural_numberEquality, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
functionEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberFormation
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}[m:\mBbbN{}].  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m.  \mexists{}i:\mBbbN{}n.  (\mexists{}j:\{\mBbbN{}i|  ((f  i)  =  (f  j))\})  supposing  m  <  n
Date html generated:
2017_09_29-PM-05_57_59
Last ObjectModification:
2017_07_26-PM-02_04_07
Theory : list_1
Home
Index