Nuprl Lemma : pigeon-hole-implies

n:ℕ. ∀[m:ℕ]. ∀f:ℕn ⟶ ℕm. ∃i:ℕn. (∃j:{ℕi| ((f i) (f j) ∈ ℤ)}) supposing m < n


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] sq_exists: x:{A| B[x]} exists: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T nat: so_lambda: λ2x.t[x] int_seg: {i..j-} subtype_rel: A ⊆B lelt: i ≤ j < k and: P ∧ Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: so_apply: x[s] inject: Inj(A;B;f) le: A ≤ B less_than: a < b sq_exists: x:{A| B[x]}
Lemmas referenced :  member-less_than decidable__exists_int_seg exists_wf int_seg_wf equal_wf int_seg_properties nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_wf lelt_wf decidable__equal_int pigeon-hole less_than_wf nat_wf intformeq_wf int_formula_prop_eq_lemma decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma sq_exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis independent_isectElimination instantiate dependent_functionElimination natural_numberEquality because_Cache sqequalRule lambdaEquality intEquality applyEquality functionExtensionality dependent_set_memberEquality productElimination independent_pairFormation unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality functionEquality equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberFormation

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}[m:\mBbbN{}].  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m.  \mexists{}i:\mBbbN{}n.  (\mexists{}j:\{\mBbbN{}i|  ((f  i)  =  (f  j))\})  supposing  m  <  n



Date html generated: 2017_09_29-PM-05_57_59
Last ObjectModification: 2017_07_26-PM-02_04_07

Theory : list_1


Home Index