Nuprl Lemma : proper-iseg-append-one

[T:Type]. ∀L1,L2:T List. ∀x:T.  (L1 < L2 [x] ⇐⇒ L1 ≤ L2)


Proof




Definitions occuring in Statement :  proper-iseg: L1 < L2 iseg: l1 ≤ l2 append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  proper-iseg: L1 < L2 uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q not: ¬A false: False or: P ∨ Q exists: x:A. B[x] assert: b ifthenelse: if then else fi  btrue: tt less_than: a < b squash: T less_than': less_than'(a;b) cons: [a b] top: Top bfalse: ff uimplies: supposing a le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla)
Lemmas referenced :  iseg_wf append_wf cons_wf nil_wf not_wf equal_wf list_wf iseg_append iseg_append_iff iseg_single and_wf list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma length_wf_nat nat_wf iseg_length length-append satisfiable-full-omega-tt intformle_wf itermAdd_wf itermVar_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation independent_pairFormation sqequalHypSubstitution productElimination thin productEquality cut introduction extract_by_obid isectElimination cumulativity hypothesisEquality hypothesis because_Cache dependent_functionElimination independent_functionElimination voidElimination universeEquality unionElimination equalitySymmetry dependent_set_memberEquality equalityTransitivity applyEquality lambdaEquality setElimination rename setEquality imageElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality hyp_replacement Error :applyLambdaEquality,  independent_isectElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x:T.    (L1  <  L2  @  [x]  \mLeftarrow{}{}\mRightarrow{}  L1  \mleq{}  L2)



Date html generated: 2016_10_21-AM-10_32_43
Last ObjectModification: 2016_07_12-AM-05_45_34

Theory : list_1


Home Index