Nuprl Lemma : rev-append-property-top-sqle

[as,bs,cs:Top].  (rev(as) bs cs ≤ rev(as) bs cs)


Proof




Definitions occuring in Statement :  rev-append: rev(as) bs append: as bs uall: [x:A]. B[x] top: Top sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rev-append: rev(as) bs append: as bs list_accum: list_accum list_ind: list_ind nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q nat_plus: + has-value: (a)↓ subtype_rel: A ⊆B cons: [a b]
Lemmas referenced :  has-value-implies-dec-isaxiom-2 is-exception_wf has-value_wf_base top_wf has-value-implies-dec-ispair-2 fun_exp_unroll_1 int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le bottom-sqle strictness-apply fun_exp0_lemma base_wf less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqleRule thin fixpointLeast lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomSqleEquality unionElimination dependent_set_memberEquality divergentSqle callbyvalueCallbyvalue callbyvalueReduce baseApply closedConclusion baseClosed applyEquality because_Cache sqleReflexivity callbyvalueExceptionCases exceptionSqequal

Latex:
\mforall{}[as,bs,cs:Top].    (rev(as)  +  bs  @  cs  \mleq{}  rev(as)  +  bs  @  cs)



Date html generated: 2016_05_14-AM-07_40_06
Last ObjectModification: 2016_01_15-AM-08_36_49

Theory : list_1


Home Index