Nuprl Lemma : select-le-imax-list
∀L:ℤ List. ∀i:ℕ||L||.  (L[i] ≤ imax-list(L))
Proof
Definitions occuring in Statement : 
imax-list: imax-list(L), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
le: A ≤ B, 
all: ∀x:A. B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_exists: (∃x∈L. P[x])
Lemmas referenced : 
imax-list-ub, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
int_seg_wf, 
length_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
imageElimination, 
unionElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
intEquality
Latex:
\mforall{}L:\mBbbZ{}  List.  \mforall{}i:\mBbbN{}||L||.    (L[i]  \mleq{}  imax-list(L))
Date html generated:
2019_10_15-AM-10_21_27
Last ObjectModification:
2019_06_26-PM-01_48_42
Theory : list_1
Home
Index