Nuprl Lemma : sorted-by-exists2

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  ((∀a,b:T.  Dec(a b ∈ T))
   (∀a,b:T.  Dec(R b))
   Linorder(T;a,b.R b)
   (∀L:T List. ∃L':T List. (sorted-by(R;L') ∧ no_repeats(T;L') ∧ L ⊆ L' ∧ L' ⊆ L)))


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) l_contains: A ⊆ B no_repeats: no_repeats(T;l) list: List linorder: Linorder(T;x,y.R[x; y]) decidable: Dec(P) uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] subtype_rel: A ⊆B and: P ∧ Q cand: c∧ B iff: ⇐⇒ Q rev_implies:  Q uimplies: supposing a guard: {T} sorted-by: sorted-by(R;L) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T
Lemmas referenced :  list_wf linorder_wf all_wf decidable_wf equal_wf dcdr-to-bool_wf dcdr-to-bool-equivalence assert_wf assert_witness iff_wf exists_wf bool_wf sorted-by-exists linorder_functionality_wrt_iff sorted-by_wf subtype_rel_dep_function l_member_wf subtype_rel_self set_wf no_repeats_wf l_contains_wf int_seg_wf length_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule lambdaEquality applyEquality functionExtensionality functionEquality universeEquality rename dependent_pairFormation independent_pairFormation because_Cache dependent_functionElimination productElimination independent_functionElimination independent_pairEquality axiomEquality allFunctionality promote_hyp productEquality independent_isectElimination instantiate setEquality setElimination natural_numberEquality unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll imageElimination

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a,b:T.    Dec(a  =  b))
    {}\mRightarrow{}  (\mforall{}a,b:T.    Dec(R  a  b))
    {}\mRightarrow{}  Linorder(T;a,b.R  a  b)
    {}\mRightarrow{}  (\mforall{}L:T  List.  \mexists{}L':T  List.  (sorted-by(R;L')  \mwedge{}  no\_repeats(T;L')  \mwedge{}  L  \msubseteq{}  L'  \mwedge{}  L'  \msubseteq{}  L)))



Date html generated: 2017_04_17-AM-08_33_12
Last ObjectModification: 2017_02_27-PM-04_53_38

Theory : list_1


Home Index