Nuprl Lemma : absval_exp

[x:ℤ]. ∀[n:ℕ].  (|x^n| |x|^n)


Proof




Definitions occuring in Statement :  exp: i^n absval: |i| nat: uall: [x:A]. B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: absval: |i| decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + le: A ≤ B subtype_rel: A ⊆B sq_type: SQType(T) guard: {T}
Lemmas referenced :  nat_wf absval_mul absval_wf exp_step le_wf exp_wf2 absval-non-neg int_subtype_base set_subtype_base subtype_base_sq int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le exp0_lemma less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom unionElimination instantiate because_Cache dependent_set_memberEquality productElimination applyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (|x\^{}n|  \msim{}  |x|\^{}n)



Date html generated: 2016_05_14-PM-04_27_57
Last ObjectModification: 2016_01_14-PM-11_34_25

Theory : num_thy_1


Home Index