Nuprl Lemma : absval_exp
∀[x:ℤ]. ∀[n:ℕ].  (|x^n| ~ |x|^n)
Proof
Definitions occuring in Statement : 
exp: i^n
, 
absval: |i|
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
absval: |i|
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
nat_plus: ℕ+
, 
le: A ≤ B
, 
subtype_rel: A ⊆r B
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
nat_wf, 
absval_mul, 
absval_wf, 
exp_step, 
le_wf, 
exp_wf2, 
absval-non-neg, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
int_term_value_subtract_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformnot_wf, 
subtract_wf, 
decidable__le, 
exp0_lemma, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
sqequalAxiom, 
unionElimination, 
instantiate, 
because_Cache, 
dependent_set_memberEquality, 
productElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[x:\mBbbZ{}].  \mforall{}[n:\mBbbN{}].    (|x\^{}n|  \msim{}  |x|\^{}n)
Date html generated:
2016_05_14-PM-04_27_57
Last ObjectModification:
2016_01_14-PM-11_34_25
Theory : num_thy_1
Home
Index