Nuprl Lemma : add-one-mod-2

[x:ℤ]. (((x 1) mod 2) (1 mod 2) ∈ ℤ)


Proof




Definitions occuring in Statement :  modulus: mod n uall: [x:A]. B[x] subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: all: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} false: False top: Top nat: iff: ⇐⇒ Q subtract: m rev_implies:  Q ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x]
Lemmas referenced :  mod_bounds less_than_wf modulus-equal modulus_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf nat_wf equal_wf iff_wf divides_wf le_wf add-associates minus-one-mul add-swap add-mul-special zero-mul add-zero divides_iff_rem_zero nat_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf itermAdd_wf itermConstant_wf itermMultiply_wf intformimplies_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formual_prop_imp_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed hypothesis addEquality because_Cache dependent_functionElimination addLevel lambdaFormation instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination isect_memberEquality voidEquality setElimination rename productElimination productEquality impliesFunctionality levelHypothesis promote_hyp applyLambdaEquality unionElimination minusEquality dependent_pairFormation lambdaEquality int_eqEquality computeAll impliesLevelFunctionality

Latex:
\mforall{}[x:\mBbbZ{}].  (((x  +  1)  mod  2)  =  (1  -  x  mod  2))



Date html generated: 2017_04_17-AM-09_43_07
Last ObjectModification: 2017_02_27-PM-05_37_48

Theory : num_thy_1


Home Index