Nuprl Lemma : add-one-mod-2
∀[x:ℤ]. (((x + 1) mod 2) = (1 - x mod 2) ∈ ℤ)
Proof
Definitions occuring in Statement : 
modulus: a mod n
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
false: False
, 
top: Top
, 
nat: ℕ
, 
iff: P 
⇐⇒ Q
, 
subtract: n - m
, 
rev_implies: P 
⇐ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
mod_bounds, 
less_than_wf, 
modulus-equal, 
modulus_wf, 
subtype_base_sq, 
int_subtype_base, 
equal-wf-base, 
true_wf, 
nequal_wf, 
nat_wf, 
equal_wf, 
iff_wf, 
divides_wf, 
le_wf, 
add-associates, 
minus-one-mul, 
add-swap, 
add-mul-special, 
zero-mul, 
add-zero, 
divides_iff_rem_zero, 
nat_properties, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
itermMultiply_wf, 
intformimplies_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formual_prop_imp_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
hypothesis, 
addEquality, 
because_Cache, 
dependent_functionElimination, 
addLevel, 
lambdaFormation, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
isect_memberEquality, 
voidEquality, 
setElimination, 
rename, 
productElimination, 
productEquality, 
impliesFunctionality, 
levelHypothesis, 
promote_hyp, 
applyLambdaEquality, 
unionElimination, 
minusEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
computeAll, 
impliesLevelFunctionality
Latex:
\mforall{}[x:\mBbbZ{}].  (((x  +  1)  mod  2)  =  (1  -  x  mod  2))
Date html generated:
2017_04_17-AM-09_43_07
Last ObjectModification:
2017_02_27-PM-05_37_48
Theory : num_thy_1
Home
Index