Nuprl Lemma : modulus-equal

x,y:ℤ. ∀m:ℕ+.  ((x mod m) (y mod m) ∈ ℤ ⇐⇒ (x y))


Proof




Definitions occuring in Statement :  divides: a modulus: mod n nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q subtract: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q divides: a decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  nat_plus_wf mod_bounds div_floor_mod_sum modulus_wf subtype_rel_sets less_than_wf nequal_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base equal_wf subtype_base_sq equal-wf-base-T div_floor_wf le_wf divides_wf subtract_wf decidable__equal_int intformnot_wf itermSubtract_wf itermAdd_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_term_value_mul_lemma decidable__lt mul_preserves_le nat_plus_subtype_nat decidable__le intformle_wf int_formula_prop_le_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis intEquality sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache applyEquality sqequalRule lambdaEquality natural_numberEquality independent_isectElimination setElimination rename setEquality applyLambdaEquality dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseClosed independent_functionElimination equalityTransitivity equalitySymmetry instantiate cumulativity productElimination addEquality multiplyEquality productEquality unionElimination baseApply closedConclusion minusEquality

Latex:
\mforall{}x,y:\mBbbZ{}.  \mforall{}m:\mBbbN{}\msupplus{}.    ((x  mod  m)  =  (y  mod  m)  \mLeftarrow{}{}\mRightarrow{}  m  |  (x  -  y))



Date html generated: 2017_04_17-AM-09_43_03
Last ObjectModification: 2017_02_27-PM-05_38_08

Theory : num_thy_1


Home Index