Nuprl Lemma : div_floor_wf
∀[a:ℤ]. ∀[n:ℤ-o].  (a ÷↓ n ∈ ℤ)
Proof
Definitions occuring in Statement : 
div_floor: a ÷↓ n, 
int_nzero: ℤ-o, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
div_floor: a ÷↓ n, 
int_nzero: ℤ-o, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
less_than: a < b, 
less_than': less_than'(a;b), 
top: Top, 
true: True, 
squash: ↓T, 
not: ¬A, 
false: False, 
prop: ℙ, 
has-value: (a)↓, 
nequal: a ≠ b ∈ T , 
guard: {T}, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
top_wf, 
less_than_wf, 
value-type-has-value, 
int-value-type, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
equal_wf, 
subtract_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
assert_of_bnot, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
independent_isectElimination, 
lessCases, 
axiomSqEquality, 
isect_memberEquality, 
independent_pairFormation, 
voidElimination, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_functionElimination, 
callbyvalueReduce, 
intEquality, 
remainderEquality, 
equalitySymmetry, 
dependent_functionElimination, 
equalityTransitivity, 
divideEquality, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
impliesFunctionality, 
axiomEquality
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}\mdownarrow{}  n  \mmember{}  \mBbbZ{})
Date html generated:
2019_06_20-AM-11_25_38
Last ObjectModification:
2018_08_20-PM-09_28_22
Theory : arithmetic
Home
Index