Nuprl Lemma : div_floor_mod_sum

[a:ℤ]. ∀[n:ℕ+].  (a (((a ÷↓ n) n) (a mod n)) ∈ ℤ)


Proof




Definitions occuring in Statement :  div_floor: a ÷↓ n modulus: mod n nat_plus: + uall: [x:A]. B[x] multiply: m add: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T modulus: mod n div_floor: a ÷↓ n subtype_rel: A ⊆B nat_plus: + int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: all: x:A. B[x] implies:  Q nequal: a ≠ b ∈  not: ¬A false: False guard: {T} sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb ifthenelse: if then else fi  assert: b iff: ⇐⇒ Q rev_implies:  Q nat: has-value: (a)↓ subtract: m
Lemmas referenced :  div_rem_sum subtype_rel_sets less_than_wf nequal_wf less_than_transitivity1 le_weakening less_than_irreflexivity equal_wf equal-wf-base int_subtype_base rem_bounds_z subtype_base_sq lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_transitivity2 le_weakening2 eqff_to_assert bool_cases_sqequal bool_subtype_base iff_transitivity assert_wf bnot_wf not_wf iff_weakening_uiff assert_of_bnot equal-wf-base-T absval_wf nat_wf nat_plus_wf value-type-has-value int-value-type subtract_wf nat_plus_subtype_nat mul-commutes add-commutes mul-distributes-right add-associates minus-one-mul-top add-swap add-mul-special zero-mul zero-add squash_wf true_wf add_functionality_wrt_eq absval_pos iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality sqequalRule intEquality because_Cache lambdaEquality natural_numberEquality hypothesis independent_isectElimination setElimination rename setEquality lambdaFormation dependent_functionElimination independent_functionElimination voidElimination baseClosed remainderEquality divideEquality instantiate cumulativity equalityTransitivity equalitySymmetry unionElimination equalityElimination productElimination lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidEquality imageMemberEquality imageElimination dependent_pairFormation promote_hyp impliesFunctionality addEquality multiplyEquality axiomEquality callbyvalueReduce equalityUniverse levelHypothesis minusEquality universeEquality

Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[n:\mBbbN{}\msupplus{}].    (a  =  (((a  \mdiv{}\mdownarrow{}  n)  *  n)  +  (a  mod  n)))



Date html generated: 2017_04_14-AM-07_19_33
Last ObjectModification: 2017_02_27-PM-02_53_18

Theory : arithmetic


Home Index