Nuprl Lemma : coprime_functionality_wrt_eqmod
∀a,a',m:ℤ.  ((a' ≡ a mod m) 
⇒ (CoPrime(a',m) 
⇐⇒ CoPrime(a,m)))
Proof
Definitions occuring in Statement : 
eqmod: a ≡ b mod m
, 
coprime: CoPrime(a,b)
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
eqmod: a ≡ b mod m
, 
divides: b | a
, 
exists: ∃x:A. B[x]
, 
coprime: CoPrime(a,b)
, 
gcd_p: GCD(a;b;y)
, 
member: t ∈ T
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
int_term_value_minus_lemma, 
itermMinus_wf, 
divisor_of_mul, 
divisor_of_sum, 
int_formula_prop_wf, 
int_term_value_subtract_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
eqmod_wf, 
coprime_wf, 
divides_wf, 
and_wf, 
one_divs_any
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
isectElimination, 
because_Cache, 
intEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
multiplyEquality, 
minusEquality
Latex:
\mforall{}a,a',m:\mBbbZ{}.    ((a'  \mequiv{}  a  mod  m)  {}\mRightarrow{}  (CoPrime(a',m)  \mLeftarrow{}{}\mRightarrow{}  CoPrime(a,m)))
Date html generated:
2016_05_14-PM-04_22_38
Last ObjectModification:
2016_01_14-PM-11_41_11
Theory : num_thy_1
Home
Index