Nuprl Lemma : divides_anti_sym

a,b:ℤ.  ((a b)  (b a)  = ± b)


Proof




Definitions occuring in Statement :  divides: a pm_equal: = ± j all: x:A. B[x] implies:  Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uimplies: supposing a
Lemmas referenced :  divides_wf istype-int divides_of_absvals absval_eq divides_anti_sym_n absval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis Error :inhabitedIsType,  dependent_functionElimination productElimination independent_pairFormation independent_functionElimination independent_isectElimination

Latex:
\mforall{}a,b:\mBbbZ{}.    ((a  |  b)  {}\mRightarrow{}  (b  |  a)  {}\mRightarrow{}  a  =  \mpm{}  b)



Date html generated: 2019_06_20-PM-02_20_12
Last ObjectModification: 2018_10_03-AM-00_35_45

Theory : num_thy_1


Home Index