Nuprl Lemma : divides_of_absvals

a,b:ℤ.  (|a| |b| ⇐⇒ b)


Proof




Definitions occuring in Statement :  divides: a absval: |i| all: x:A. B[x] iff: ⇐⇒ Q int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot divides_invar_2 divides_wf minus-minus divides_invar_1 iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis minusEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity intEquality addLevel impliesFunctionality

Latex:
\mforall{}a,b:\mBbbZ{}.    (|a|  |  |b|  \mLeftarrow{}{}\mRightarrow{}  a  |  b)



Date html generated: 2017_04_17-AM-09_41_34
Last ObjectModification: 2017_02_27-PM-05_36_35

Theory : num_thy_1


Home Index