Nuprl Lemma : absval_eq

x,y:ℤ.  (|x| |y| ∈ ℤ ⇐⇒ = ± y)


Proof




Definitions occuring in Statement :  pm_equal: = ± j absval: |i| all: x:A. B[x] iff: ⇐⇒ Q int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] pm_equal: = ± j uall: [x:A]. B[x] member: t ∈ T implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] subtype_rel: A ⊆B rev_implies:  Q bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b
Lemmas referenced :  absval_unfold lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf equal-wf-base itermMinus_wf intformless_wf itermConstant_wf int_term_value_minus_lemma int_formula_prop_less_lemma int_term_value_constant_lemma eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot int_subtype_base or_wf intformor_wf int_formula_prop_or_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis minusEquality natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache lessCases isect_memberFormation sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination inlFormation dependent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll baseApply closedConclusion applyEquality promote_hyp instantiate cumulativity inrFormation

Latex:
\mforall{}x,y:\mBbbZ{}.    (|x|  =  |y|  \mLeftarrow{}{}\mRightarrow{}  x  =  \mpm{}  y)



Date html generated: 2017_04_14-AM-09_13_16
Last ObjectModification: 2017_02_27-PM-03_50_55

Theory : int_2


Home Index