Nuprl Lemma : divides_anti_sym_n
∀[a,b:ℕ]. (a = b ∈ ℤ) supposing ((b | a) and (a | b))
Proof
Definitions occuring in Statement :
divides: b | a
,
nat: ℕ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
int: ℤ
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
nat: ℕ
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
divides: b | a
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
ge: i ≥ j
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
and: P ∧ Q
,
nat_plus: ℕ+
,
le: A ≤ B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
uiff: uiff(P;Q)
,
less_than': less_than'(a;b)
,
true: True
,
subtract: n - m
Lemmas referenced :
divides_wf,
nat_wf,
decidable__equal_int,
equal-wf-T-base,
int_subtype_base,
nat_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformeq_wf,
itermVar_wf,
itermConstant_wf,
itermMultiply_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_term_value_mul_lemma,
int_formula_prop_wf,
divisors_bound,
decidable__lt,
false_wf,
not-lt-2,
not-equal-2,
add_functionality_wrt_le,
add-associates,
add-zero,
zero-add,
le-add-cancel,
condition-implies-le,
add-commutes,
minus-add,
minus-zero,
less_than_wf,
intformle_wf,
int_formula_prop_le_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
setElimination,
rename,
hypothesisEquality,
sqequalRule,
isect_memberEquality,
axiomEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
natural_numberEquality,
unionElimination,
productElimination,
hyp_replacement,
Error :applyLambdaEquality,
intEquality,
baseApply,
closedConclusion,
baseClosed,
applyEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
dependent_set_memberEquality,
lambdaFormation,
independent_functionElimination,
addEquality,
minusEquality
Latex:
\mforall{}[a,b:\mBbbN{}]. (a = b) supposing ((b | a) and (a | b))
Date html generated:
2016_10_21-AM-11_07_37
Last ObjectModification:
2016_07_12-AM-06_00_22
Theory : num_thy_1
Home
Index