Nuprl Lemma : divisors_bound

[a:ℕ]. ∀[b:ℕ+].  a ≤ supposing b


Proof




Definitions occuring in Statement :  divides: a nat_plus: + nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat_plus: + nat: prop: divides: a exists: x:A. B[x] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  int_formula_prop_less_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_formula_prop_and_lemma intformless_wf intformeq_wf itermMultiply_wf intformand_wf mul_preserves_le int_formula_prop_wf int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma itermConstant_wf itermVar_wf intformle_wf intformor_wf intformnot_wf satisfiable-full-omega-tt decidable__le le_wf decidable__or nat_properties nat_plus_properties nat_wf nat_plus_wf divides_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality because_Cache lemma_by_obid isectElimination setElimination rename hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination natural_numberEquality independent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll independent_pairFormation

Latex:
\mforall{}[a:\mBbbN{}].  \mforall{}[b:\mBbbN{}\msupplus{}].    a  \mleq{}  b  supposing  a  |  b



Date html generated: 2016_05_14-PM-04_15_57
Last ObjectModification: 2016_01_14-PM-11_42_31

Theory : num_thy_1


Home Index