Nuprl Lemma : divides_iff_div_exact

a:ℤ. ∀n:ℤ-o.  (n ⇐⇒ ((a ÷ n) n) a ∈ ℤ)


Proof




Definitions occuring in Statement :  divides: a int_nzero: -o all: x:A. B[x] iff: ⇐⇒ Q divide: n ÷ m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] int_nzero: -o prop: rev_implies:  Q nequal: a ≠ b ∈  not: ¬A false: False uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top subtype_rel: A ⊆B uiff: uiff(P;Q) decidable: Dec(P) or: P ∨ Q divides: a
Lemmas referenced :  divides_wf int_nzero_properties full-omega-unsat istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_subtype_base int_nzero_wf divides_iff_rem_zero add_mono_wrt_eq div_rem_sum decidable__equal_int add-is-int-iff multiply-is-int-iff intformand_wf intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf itermAdd_wf itermConstant_wf int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_wf false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  independent_pairFormation cut hypothesis Error :universeIsType,  introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality Error :equalityIsType4,  Error :inhabitedIsType,  multiplyEquality divideEquality because_Cache independent_functionElimination voidElimination independent_isectElimination approximateComputation Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality natural_numberEquality dependent_functionElimination Error :isect_memberEquality_alt,  sqequalRule applyEquality productElimination equalityTransitivity equalitySymmetry unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed

Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}n:\mBbbZ{}\msupminus{}\msupzero{}.    (n  |  a  \mLeftarrow{}{}\mRightarrow{}  ((a  \mdiv{}  n)  *  n)  =  a)



Date html generated: 2019_06_20-PM-02_20_31
Last ObjectModification: 2018_10_03-AM-00_35_42

Theory : num_thy_1


Home Index