Nuprl Lemma : divides_iff_div_exact
∀a:ℤ. ∀n:ℤ-o.  (n | a 
⇐⇒ ((a ÷ n) * n) = a ∈ ℤ)
Proof
Definitions occuring in Statement : 
divides: b | a
, 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
int_nzero: ℤ-o
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
uiff: uiff(P;Q)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
divides: b | a
Lemmas referenced : 
divides_wf, 
int_nzero_properties, 
full-omega-unsat, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_not_lemma, 
int_subtype_base, 
int_nzero_wf, 
divides_iff_rem_zero, 
add_mono_wrt_eq, 
div_rem_sum, 
decidable__equal_int, 
add-is-int-iff, 
multiply-is-int-iff, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
independent_pairFormation, 
cut, 
hypothesis, 
Error :universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
Error :equalityIsType4, 
Error :inhabitedIsType, 
multiplyEquality, 
divideEquality, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
independent_isectElimination, 
approximateComputation, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
natural_numberEquality, 
dependent_functionElimination, 
Error :isect_memberEquality_alt, 
sqequalRule, 
applyEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed
Latex:
\mforall{}a:\mBbbZ{}.  \mforall{}n:\mBbbZ{}\msupminus{}\msupzero{}.    (n  |  a  \mLeftarrow{}{}\mRightarrow{}  ((a  \mdiv{}  n)  *  n)  =  a)
Date html generated:
2019_06_20-PM-02_20_31
Last ObjectModification:
2018_10_03-AM-00_35_42
Theory : num_thy_1
Home
Index