Nuprl Lemma : even-iff-not-odd
∀[n:ℤ]. uiff(↑isEven(n);¬↑isOdd(n))
Proof
Definitions occuring in Statement : 
isEven: isEven(n)
, 
isOdd: isOdd(n)
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
prop: ℙ
, 
bor: p ∨bq
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
assert: ↑b
, 
btrue: tt
, 
true: True
Lemmas referenced : 
even-implies, 
assert_wf, 
isOdd_wf, 
isEven_wf, 
odd-or-even, 
not_assert_elim, 
and_wf, 
equal_wf, 
bool_wf, 
bor_wf, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base, 
assert_witness, 
not_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
voidElimination, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
because_Cache, 
independent_isectElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
equalityTransitivity, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
instantiate, 
cumulativity, 
natural_numberEquality, 
independent_pairEquality, 
isect_memberEquality, 
intEquality
Latex:
\mforall{}[n:\mBbbZ{}].  uiff(\muparrow{}isEven(n);\mneg{}\muparrow{}isOdd(n))
Date html generated:
2016_05_14-PM-04_24_04
Last ObjectModification:
2015_12_26-PM-08_19_25
Theory : num_thy_1
Home
Index