Nuprl Lemma : even-implies-two-times

n:ℕ((↑isEven(n))  (∃k:ℕ(n (2 k) ∈ ℤ)))


Proof




Definitions occuring in Statement :  isEven: isEven(n) nat: assert: b all: x:A. B[x] exists: x:A. B[x] implies:  Q multiply: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T nat: iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] uall: [x:A]. B[x] ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop:
Lemmas referenced :  nat_wf isEven_wf assert_wf equal_wf le_wf int_formula_prop_wf int_term_value_mul_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMultiply_wf intformeq_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties assert-isEven
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis productElimination independent_functionElimination dependent_pairFormation dependent_set_memberEquality isectElimination natural_numberEquality unionElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll multiplyEquality

Latex:
\mforall{}n:\mBbbN{}.  ((\muparrow{}isEven(n))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  (n  =  (2  *  k))))



Date html generated: 2016_05_14-PM-04_23_46
Last ObjectModification: 2016_01_14-PM-11_38_55

Theory : num_thy_1


Home Index