Nuprl Lemma : not-prime-square

[x:ℤ]. prime(x x))


Proof




Definitions occuring in Statement :  prime: prime(a) uall: [x:A]. B[x] not: ¬A multiply: m int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False uimplies: supposing a atomic: atomic(a) and: P ∧ Q prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q reducible: reducible(a) exists: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtype_rel: A ⊆B cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) guard: {T} squash: T true: True
Lemmas referenced :  prime_imp_atomic prime_wf decidable__lt full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base nequal_wf not_wf assoced_wf equal-wf-base-T exists_wf int_nzero_wf assoced_functionality_wrt_assoced multiply_functionality_wrt_assoced assoced_weakening itermMinus_wf int_term_value_minus_lemma decidable__equal_int intformnot_wf itermMultiply_wf int_formula_prop_not_lemma int_term_value_mul_lemma subtype_base_sq equal_wf squash_wf true_wf zero_ann_a subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination multiplyEquality hypothesisEquality independent_isectElimination hypothesis productElimination independent_functionElimination voidElimination because_Cache sqequalRule lambdaEquality dependent_functionElimination intEquality natural_numberEquality unionElimination dependent_pairFormation dependent_set_memberEquality approximateComputation int_eqEquality isect_memberEquality voidEquality independent_pairFormation applyEquality baseClosed productEquality setElimination rename baseApply closedConclusion minusEquality instantiate cumulativity equalityTransitivity equalitySymmetry imageElimination universeEquality inlFormation imageMemberEquality

Latex:
\mforall{}[x:\mBbbZ{}].  (\mneg{}prime(x  *  x))



Date html generated: 2019_06_20-PM-02_23_18
Last ObjectModification: 2018_09_22-PM-06_29_09

Theory : num_thy_1


Home Index