Nuprl Lemma : equiv_rel_quotient
ā[T:Type]. ā[E1,E2:T ā¶ T ā¶ š¹].
(EquivRel(T;x,y.āE2[x;y])
ā EquivRel(T;x,y.āE1[x;y])
ā (āx,y:T. ((āE2[x;y])
ā (āE1[x;y])))
ā EquivRel(x,y:T//(āE2[x;y]);x,y.āE1[x;y]))
Proof
Definitions occuring in Statement :
equiv_rel: EquivRel(T;x,y.E[x; y])
,
quotient: x,y:A//B[x; y]
,
assert: āb
,
bool: š¹
,
uall: ā[x:A]. B[x]
,
so_apply: x[s1;s2]
,
all: āx:A. B[x]
,
implies: P
ā Q
,
function: x:A ā¶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ā[x:A]. B[x]
,
implies: P
ā Q
,
member: t ā T
,
equiv_rel: EquivRel(T;x,y.E[x; y])
,
and: P ā§ Q
,
refl: Refl(T;x,y.E[x; y])
,
all: āx:A. B[x]
,
so_lambda: Ī»2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
cand: A cā§ B
,
sym: Sym(T;x,y.E[x; y])
,
prop: ā
,
trans: Trans(T;x,y.E[x; y])
,
so_lambda: Ī»2x.t[x]
,
so_apply: x[s]
,
quotient: x,y:A//B[x; y]
,
subtype_rel: A ār B
,
guard: {T}
Lemmas referenced :
equiv_rel-wf-quotient,
quotient_wf,
assert_wf,
assert_witness,
all_wf,
equiv_rel_wf,
bool_wf,
subtype_quotient,
equal-wf-base,
equal_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
lambdaFormation,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_functionElimination,
hypothesis,
independent_pairFormation,
cumulativity,
sqequalRule,
lambdaEquality,
applyEquality,
functionExtensionality,
independent_isectElimination,
because_Cache,
functionEquality,
universeEquality,
pointwiseFunctionalityForEquality,
pertypeElimination,
productElimination,
equalityTransitivity,
equalitySymmetry,
productEquality,
dependent_functionElimination,
rename
Latex:
\mforall{}[T:Type]. \mforall{}[E1,E2:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbB{}].
(EquivRel(T;x,y.\muparrow{}E2[x;y])
{}\mRightarrow{} EquivRel(T;x,y.\muparrow{}E1[x;y])
{}\mRightarrow{} (\mforall{}x,y:T. ((\muparrow{}E2[x;y]) {}\mRightarrow{} (\muparrow{}E1[x;y])))
{}\mRightarrow{} EquivRel(x,y:T//(\muparrow{}E2[x;y]);x,y.\muparrow{}E1[x;y]))
Date html generated:
2017_04_14-AM-07_39_44
Last ObjectModification:
2017_02_27-PM-03_12_30
Theory : quot_1
Home
Index