Nuprl Lemma : imp-type_wf

[A,B:Type].  (imp-type(A;B) ∈ Type)


Proof




Definitions occuring in Statement :  imp-type: imp-type(A;B) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T imp-type: imp-type(A;B) so_lambda: λ2y.t[x; y] implies:  Q prop: so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf base_wf least-equiv_wf equal-wf-base least-equiv-is-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin closedConclusion hypothesis Error :lambdaEquality_alt,  applyEquality because_Cache functionEquality Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  universeEquality

Latex:
\mforall{}[A,B:Type].    (imp-type(A;B)  \mmember{}  Type)



Date html generated: 2019_06_20-PM-02_01_41
Last ObjectModification: 2018_10_14-PM-05_23_45

Theory : relations2


Home Index