Nuprl Lemma : imp-type_wf
∀[A,B:Type].  (imp-type(A;B) ∈ Type)
Proof
Definitions occuring in Statement : 
imp-type: imp-type(A;B)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
imp-type: imp-type(A;B)
, 
so_lambda: λ2x y.t[x; y]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
Lemmas referenced : 
quotient_wf, 
base_wf, 
least-equiv_wf, 
equal-wf-base, 
least-equiv-is-equiv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
closedConclusion, 
hypothesis, 
Error :lambdaEquality_alt, 
applyEquality, 
because_Cache, 
functionEquality, 
Error :inhabitedIsType, 
hypothesisEquality, 
Error :universeIsType, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
universeEquality
Latex:
\mforall{}[A,B:Type].    (imp-type(A;B)  \mmember{}  Type)
Date html generated:
2019_06_20-PM-02_01_41
Last ObjectModification:
2018_10_14-PM-05_23_45
Theory : relations2
Home
Index