Nuprl Lemma : rel-exp-add-1-iff

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀a:ℕ+. ∀x,z:T.  (x R^a ⇐⇒ ∃y:T. ((x R^a y) ∧ (y z)))


Proof




Definitions occuring in Statement :  rel_exp: R^n nat_plus: + uall: [x:A]. B[x] prop: infix_ap: y all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] subtract: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: infix_ap: y subtype_rel: A ⊆B rev_implies:  Q so_lambda: λ2x.t[x] nat: nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_apply: x[s] cand: c∧ B
Lemmas referenced :  equal_wf and_wf less_than_wf decidable__lt int_formula_prop_eq_lemma intformeq_wf rel_exp_iff nat_plus_wf le_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties subtract_wf infix_ap_wf exists_wf nat_plus_subtype_nat rel_exp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation applyEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule cumulativity lambdaEquality productEquality instantiate because_Cache universeEquality dependent_set_memberEquality setElimination rename natural_numberEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionEquality productElimination independent_functionElimination inlFormation

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}a:\mBbbN{}\msupplus{}.  \mforall{}x,z:T.    (x  R\^{}a  z  \mLeftarrow{}{}\mRightarrow{}  \mexists{}y:T.  ((x  R\^{}a  -  1  y)  \mwedge{}  (y  R  z)))



Date html generated: 2016_05_14-PM-03_56_12
Last ObjectModification: 2016_01_14-PM-11_11_47

Theory : relations2


Home Index