Nuprl Lemma : rel_finite-restrict
∀[E:Type]. ∀P:E ⟶ 𝔹. ∀[R:E ⟶ E ⟶ ℙ]. (rel_finite(E;R) 
⇒ rel_finite({e:E| ↑(P e)} R))
Proof
Definitions occuring in Statement : 
rel_finite: rel_finite(T;R)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rel_finite: rel_finite(T;R)
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
guard: {T}
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
true: True
, 
prop: ℙ
, 
infix_ap: x f y
Lemmas referenced : 
filter_type, 
l_member_set2, 
assert_wf, 
member_filter, 
assert_elim, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
set_wf, 
all_wf, 
l_member_wf, 
rel_finite_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
productElimination, 
dependent_pairFormation, 
cut, 
lemma_by_obid, 
isectElimination, 
cumulativity, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
addLevel, 
independent_isectElimination, 
levelHypothesis, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
setEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[E:Type].  \mforall{}P:E  {}\mrightarrow{}  \mBbbB{}.  \mforall{}[R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].  (rel\_finite(E;R)  {}\mRightarrow{}  rel\_finite(\{e:E|  \muparrow{}(P  e)\}  ;R))
Date html generated:
2016_05_14-PM-03_51_47
Last ObjectModification:
2015_12_26-PM-06_57_27
Theory : relations2
Home
Index