Nuprl Lemma : rel_finite-restrict

[E:Type]. ∀P:E ⟶ 𝔹. ∀[R:E ⟶ E ⟶ ℙ]. (rel_finite(E;R)  rel_finite({e:E| ↑(P e)} ;R))


Proof




Definitions occuring in Statement :  rel_finite: rel_finite(T;R) assert: b bool: 𝔹 uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q rel_finite: rel_finite(T;R) member: t ∈ T exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uimplies: supposing a sq_type: SQType(T) guard: {T} assert: b ifthenelse: if then else fi  btrue: tt true: True prop: infix_ap: y
Lemmas referenced :  filter_type l_member_set2 assert_wf member_filter assert_elim subtype_base_sq bool_wf bool_subtype_base set_wf all_wf l_member_wf rel_finite_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality productElimination dependent_pairFormation cut lemma_by_obid isectElimination cumulativity hypothesis sqequalRule lambdaEquality applyEquality because_Cache independent_functionElimination independent_pairFormation addLevel independent_isectElimination levelHypothesis instantiate equalityTransitivity equalitySymmetry natural_numberEquality setEquality functionEquality universeEquality

Latex:
\mforall{}[E:Type].  \mforall{}P:E  {}\mrightarrow{}  \mBbbB{}.  \mforall{}[R:E  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbP{}].  (rel\_finite(E;R)  {}\mRightarrow{}  rel\_finite(\{e:E|  \muparrow{}(P  e)\}  ;R))



Date html generated: 2016_05_14-PM-03_51_47
Last ObjectModification: 2015_12_26-PM-06_57_27

Theory : relations2


Home Index