Nuprl Lemma : transitive-closure-induction-ext

[A:Type]. ∀[P:A ⟶ ℙ]. ∀[R:A ⟶ A ⟶ ℙ].
  ((∀x,y:A.  ((x y)  P[x]  P[y]))  (∀x,y:A.  ((x TC(R) y)  P[x]  P[y])))


Proof




Definitions occuring in Statement :  transitive-closure: TC(R) uall: [x:A]. B[x] prop: infix_ap: y so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T spreadn: spread3 transitive-closure-induction transitive-closure-minimal uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  transitive-closure-induction lifting-strict-spread istype-void strict4-apply transitive-closure-minimal
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed Error :isect_memberEquality_alt,  voidElimination independent_isectElimination

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:A.    ((x  R  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y]))  {}\mRightarrow{}  (\mforall{}x,y:A.    ((x  TC(R)  y)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[y])))



Date html generated: 2019_06_20-PM-02_01_32
Last ObjectModification: 2019_01_11-PM-04_20_45

Theory : relations2


Home Index