Nuprl Lemma : inject_functionality
∀[A,B,C:Type]. ∀[f:B ⟶ C].  (Inj(A;C;f)) supposing (Inj(B;C;f) and strong-subtype(A;B))
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B), 
inject: Inj(A;B;f), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
strong-subtype: strong-subtype(A;B), 
cand: A c∧ B, 
all: ∀x:A. B[x], 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
prop: ℙ, 
inject: Inj(A;B;f), 
guard: {T}, 
label: ...$L... t
Lemmas referenced : 
sq_stable__inject, 
subtype_rel_dep_function, 
inject_wf, 
strong-subtype_wf, 
strong-subtype-implies, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
independent_isectElimination, 
hypothesis, 
productElimination, 
lambdaFormation, 
because_Cache, 
independent_functionElimination, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
functionExtensionality, 
functionEquality, 
universeEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[f:B  {}\mrightarrow{}  C].    (Inj(A;C;f))  supposing  (Inj(B;C;f)  and  strong-subtype(A;B))
Date html generated:
2017_04_14-AM-07_36_57
Last ObjectModification:
2017_02_27-PM-03_09_04
Theory : subtype_1
Home
Index