Nuprl Lemma : assert-not-isvarterm
∀[opr:Type]. ∀t:term(opr). (¬↑isvarterm(t) ⇐⇒ ∃f:opr. ∃bts:bound-term(opr) List. (t = mkterm(f;bts) ∈ term(opr)))
Proof
Definitions occuring in Statement : 
bound-term: bound-term(opr), 
mkterm: mkterm(opr;bts), 
isvarterm: isvarterm(t), 
term: term(opr), 
list: T List, 
assert: ↑b, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
not: ¬A, 
false: False, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
bound-term: bound-term(opr), 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
coterm-fun: coterm-fun(opr;T), 
isvarterm: isvarterm(t), 
isl: isl(x), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True, 
bfalse: ff, 
mkterm: mkterm(opr;bts), 
squash: ↓T, 
prop: ℙ
Lemmas referenced : 
term-ext, 
istype-assert, 
isvarterm_wf, 
istype-void, 
list_wf, 
bound-term_wf, 
mkterm_wf, 
term_wf, 
istype-universe, 
subtype_rel_weakening, 
coterm-fun_wf, 
istype-true, 
iff_weakening_uiff, 
assert_wf, 
assert_functionality_wrt_uiff, 
squash_wf, 
true_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
independent_pairFormation, 
sqequalRule, 
functionIsType, 
productElimination, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
productIsType, 
universeIsType, 
equalityIstype, 
inhabitedIsType, 
instantiate, 
universeEquality, 
applyEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
imageElimination, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[opr:Type]
    \mforall{}t:term(opr).  (\mneg{}\muparrow{}isvarterm(t)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}f:opr.  \mexists{}bts:bound-term(opr)  List.  (t  =  mkterm(f;bts)))
Date html generated:
2020_05_19-PM-09_53_51
Last ObjectModification:
2020_03_09-PM-04_08_23
Theory : terms
Home
Index