Nuprl Lemma : hereditarily-mkterm
∀[opr:Type]. ∀[P:term(opr) ⟶ ℙ].
  ∀f:opr. ∀bts:bound-term(opr) List.
    (hereditarily(opr;s.P[s];mkterm(f;bts))
    ⇐⇒ P[mkterm(f;bts)] ∧ (∀bt:bound-term(opr). ((bt ∈ bts) ⇒ hereditarily(opr;s.P[s];snd(bt)))))
Proof
Definitions occuring in Statement : 
hereditarily: hereditarily(opr;s.P[s];t), 
bound-term: bound-term(opr), 
mkterm: mkterm(opr;bts), 
term: term(opr), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
pi2: snd(t), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
bound-term: bound-term(opr), 
rev_implies: P ⇐ Q, 
pi2: snd(t), 
hereditarily: hereditarily(opr;s.P[s];t), 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
or: P ∨ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
ge: i ≥ j , 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
guard: {T}
Lemmas referenced : 
l_member_wf, 
bound-term_wf, 
hereditarily_wf, 
term_wf, 
mkterm_wf, 
list_wf, 
istype-universe, 
hereditarily_functionality_wrt_subterm, 
subterm-mkterm, 
istype-le, 
istype-less_than, 
length_wf, 
subterm_wf, 
select_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
select_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
productElimination, 
productIsType, 
functionIsType, 
because_Cache, 
universeEquality, 
instantiate, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
inlFormation_alt, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
inhabitedIsType, 
applyLambdaEquality, 
independent_isectElimination, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
voidElimination, 
unionIsType, 
imageElimination, 
hyp_replacement
Latex:
\mforall{}[opr:Type].  \mforall{}[P:term(opr)  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:opr.  \mforall{}bts:bound-term(opr)  List.
        (hereditarily(opr;s.P[s];mkterm(f;bts))
        \mLeftarrow{}{}\mRightarrow{}  P[mkterm(f;bts)]  \mwedge{}  (\mforall{}bt:bound-term(opr).  ((bt  \mmember{}  bts)  {}\mRightarrow{}  hereditarily(opr;s.P[s];snd(bt)))))
Date html generated:
2020_05_19-PM-09_54_37
Last ObjectModification:
2020_03_10-PM-03_49_56
Theory : terms
Home
Index