Step
*
2
1
1
2
1
of Lemma
adjacent-reverse
1. [T] : Type
2. u : T
3. v : T List
4. x : T
5. y : T
6. adjacent(T;rev(v);x;y)
⇒ adjacent(T;v;y;x)
7. adjacent(T;rev(v);x;y)
⇐ adjacent(T;v;y;x)
8. 0 < ||v||
9. ¬↑null(rev(v))
10. adjacent(T;[u];x;y)
⊢ ((y = u ∈ T) ∧ (x = hd(v) ∈ T)) ∨ adjacent(T;v;y;x)
BY
{ (FLemma `adjacent-singleton` [-1] THEN Auto)⋅ }
Latex:
Latex:
1. [T] : Type
2. u : T
3. v : T List
4. x : T
5. y : T
6. adjacent(T;rev(v);x;y) {}\mRightarrow{} adjacent(T;v;y;x)
7. adjacent(T;rev(v);x;y) \mLeftarrow{}{} adjacent(T;v;y;x)
8. 0 < ||v||
9. \mneg{}\muparrow{}null(rev(v))
10. adjacent(T;[u];x;y)
\mvdash{} ((y = u) \mwedge{} (x = hd(v))) \mvee{} adjacent(T;v;y;x)
By
Latex:
(FLemma `adjacent-singleton` [-1] THEN Auto)\mcdot{}
Home
Index