Nuprl Lemma : adjacent-reverse
∀[T:Type]. ∀L:T List. ∀x,y:T.  (adjacent(T;rev(L);x;y) 
⇐⇒ adjacent(T;L;y;x))
Proof
Definitions occuring in Statement : 
adjacent: adjacent(T;L;x;y)
, 
reverse: rev(as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
top: Top
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
cons: [a / b]
, 
bfalse: ff
, 
not: ¬A
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
true: True
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
le: A ≤ B
Lemmas referenced : 
list_induction, 
all_wf, 
iff_wf, 
adjacent_wf, 
reverse_wf, 
list_wf, 
reverse_nil_lemma, 
reverse-cons, 
adjacent-nil, 
nil_wf, 
decidable__lt, 
length_wf, 
length-reverse, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
false_wf, 
less_than_wf, 
equal_wf, 
reduce_hd_cons_lemma, 
hd_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
last-reverse, 
or_wf, 
last_wf, 
cons_wf, 
adjacent-append, 
append_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
adjacent-cons, 
adjacent-singleton, 
list_ind_nil_lemma, 
non_neg_length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
rename, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
dependent_functionElimination, 
universeEquality, 
independent_pairFormation, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
productElimination, 
imageElimination, 
promote_hyp, 
hypothesis_subsumption, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
productEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
inlFormation, 
imageMemberEquality, 
baseClosed, 
addLevel, 
impliesFunctionality, 
addEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x,y:T.    (adjacent(T;rev(L);x;y)  \mLeftarrow{}{}\mRightarrow{}  adjacent(T;L;y;x))
Date html generated:
2018_05_21-PM-06_39_13
Last ObjectModification:
2017_07_26-PM-04_53_18
Theory : general
Home
Index