Nuprl Lemma : adjacent-reverse

[T:Type]. ∀L:T List. ∀x,y:T.  (adjacent(T;rev(L);x;y) ⇐⇒ adjacent(T;L;y;x))


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) reverse: rev(as) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q top: Top prop: iff: ⇐⇒ Q and: P ∧ Q uimplies: supposing a false: False rev_implies:  Q decidable: Dec(P) or: P ∨ Q assert: b ifthenelse: if then else fi  btrue: tt less_than: a < b squash: T less_than': less_than'(a;b) cons: [a b] bfalse: ff not: ¬A guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] cand: c∧ B true: True append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] le: A ≤ B
Lemmas referenced :  list_induction all_wf iff_wf adjacent_wf reverse_wf list_wf reverse_nil_lemma reverse-cons adjacent-nil nil_wf decidable__lt length_wf length-reverse list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma false_wf less_than_wf equal_wf reduce_hd_cons_lemma hd_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf last-reverse or_wf last_wf cons_wf adjacent-append append_wf itermAdd_wf int_term_value_add_lemma adjacent-cons adjacent-singleton list_ind_nil_lemma non_neg_length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis independent_functionElimination rename isect_memberEquality voidElimination voidEquality because_Cache dependent_functionElimination universeEquality independent_pairFormation independent_isectElimination natural_numberEquality unionElimination productElimination imageElimination promote_hyp hypothesis_subsumption equalityTransitivity equalitySymmetry inrFormation productEquality dependent_pairFormation int_eqEquality intEquality computeAll inlFormation imageMemberEquality baseClosed addLevel impliesFunctionality addEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}x,y:T.    (adjacent(T;rev(L);x;y)  \mLeftarrow{}{}\mRightarrow{}  adjacent(T;L;y;x))



Date html generated: 2018_05_21-PM-06_39_13
Last ObjectModification: 2017_07_26-PM-04_53_18

Theory : general


Home Index