Nuprl Lemma : adjacent-cons

[T:Type]
  ∀x,y,u:T. ∀L:T List.  (adjacent(T;[u L];x;y) ⇐⇒ 0 < ||L|| ∧ (((x u ∈ T) ∧ (y hd(L) ∈ T)) ∨ adjacent(T;L;x;y)))


Proof




Definitions occuring in Statement :  adjacent: adjacent(T;L;x;y) hd: hd(l) length: ||as|| cons: [a b] list: List less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q and: P ∧ Q natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  adjacent: adjacent(T;L;x;y) all: x:A. B[x] member: t ∈ T top: Top uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q false: False less_than: a < b squash: T uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A prop: so_lambda: λ2x.t[x] ge: i ≥  le: A ≤ B so_apply: x[s] rev_implies:  Q sq_type: SQType(T) select: L[n] cons: [a b] subtract: m cand: c∧ B less_than': less_than'(a;b)
Lemmas referenced :  length_of_cons_lemma int_seg_properties decidable__lt length_wf subtract-is-int-iff add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermSubtract_wf itermAdd_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_add_lemma int_formula_prop_le_lemma int_formula_prop_wf false_wf exists_wf int_seg_wf subtract_wf equal_wf select_wf cons_wf decidable__le non_neg_length less_than_wf or_wf hd_wf list_wf decidable__equal_int subtype_base_sq int_subtype_base select0 intformeq_wf int_formula_prop_eq_lemma lelt_wf select-cons-tl general_arith_equation1 add-member-int_seg2 add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation independent_pairFormation productElimination isectElimination because_Cache hypothesisEquality setElimination rename cumulativity unionElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseApply closedConclusion baseClosed independent_isectElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll addEquality productEquality universeEquality instantiate independent_functionElimination inlFormation inrFormation dependent_set_memberEquality

Latex:
\mforall{}[T:Type]
    \mforall{}x,y,u:T.  \mforall{}L:T  List.
        (adjacent(T;[u  /  L];x;y)  \mLeftarrow{}{}\mRightarrow{}  0  <  ||L||  \mwedge{}  (((x  =  u)  \mwedge{}  (y  =  hd(L)))  \mvee{}  adjacent(T;L;x;y)))



Date html generated: 2018_05_21-PM-06_32_44
Last ObjectModification: 2017_07_26-PM-04_51_47

Theory : general


Home Index