Nuprl Lemma : continuous'-monotone-product
∀[F,G:Type ⟶ Type].
  (continuous'-monotone{i:l}(T.F[T] × G[T])) supposing 
     (continuous'-monotone{i:l}(T.G[T]) and 
     continuous'-monotone{i:l}(T.F[T]))
Proof
Definitions occuring in Statement : 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
continuous'-monotone: continuous'-monotone{i:l}(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
type-monotone: Monotone(T.F[T])
, 
subtype_rel: A ⊆r B
, 
type-continuous': semi-continuous(λT.F[T])
, 
tunion: ⋃x:A.B[x]
, 
pi2: snd(t)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
prop: ℙ
, 
type-incr-chain: type-incr-chain{i:l}()
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
subtype_rel_simple_product, 
subtype_rel_wf, 
imax_wf, 
imax_nat, 
nat_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
le_wf, 
type-incr-chain-subtype, 
imax_ub, 
tunion_wf, 
type-incr-chain_wf, 
type-monotone_wf, 
type-continuous'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
independent_pairFormation, 
lambdaEquality, 
independent_pairEquality, 
imageElimination, 
imageMemberEquality, 
dependent_pairEquality, 
dependent_set_memberEquality, 
setElimination, 
rename, 
lambdaFormation, 
applyLambdaEquality, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
inlFormation, 
inrFormation, 
productEquality, 
baseClosed, 
functionEquality
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (continuous'-monotone\{i:l\}(T.F[T]  \mtimes{}  G[T]))  supposing 
          (continuous'-monotone\{i:l\}(T.G[T])  and 
          continuous'-monotone\{i:l\}(T.F[T]))
Date html generated:
2018_05_21-PM-08_44_12
Last ObjectModification:
2018_05_19-PM-05_06_24
Theory : general
Home
Index