Nuprl Lemma : continuous'-monotone-product

[F,G:Type ⟶ Type].
  (continuous'-monotone{i:l}(T.F[T] × G[T])) supposing 
     (continuous'-monotone{i:l}(T.G[T]) and 
     continuous'-monotone{i:l}(T.F[T]))


Proof




Definitions occuring in Statement :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B type-monotone: Monotone(T.F[T]) subtype_rel: A ⊆B type-continuous': semi-continuous(λT.F[T]) tunion: x:A.B[x] pi2: snd(t) nat: all: x:A. B[x] implies:  Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top prop: type-incr-chain: type-incr-chain{i:l}() iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x]
Lemmas referenced :  subtype_rel_simple_product subtype_rel_wf imax_wf imax_nat nat_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf type-incr-chain-subtype imax_ub tunion_wf type-incr-chain_wf type-monotone_wf type-continuous'_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination applyEquality hypothesisEquality independent_isectElimination hypothesis axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry universeEquality independent_pairFormation lambdaEquality independent_pairEquality imageElimination imageMemberEquality dependent_pairEquality dependent_set_memberEquality setElimination rename lambdaFormation applyLambdaEquality dependent_functionElimination natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality inlFormation inrFormation productEquality baseClosed functionEquality

Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (continuous'-monotone\{i:l\}(T.F[T]  \mtimes{}  G[T]))  supposing 
          (continuous'-monotone\{i:l\}(T.G[T])  and 
          continuous'-monotone\{i:l\}(T.F[T]))



Date html generated: 2018_05_21-PM-08_44_12
Last ObjectModification: 2018_05_19-PM-05_06_24

Theory : general


Home Index