Nuprl Lemma : destructor-product
∀[F,G:Type ⟶ Type].  (destructor{i:l}(T.F[T]) 
⇒ destructor{i:l}(T.G[T]) 
⇒ destructor{i:l}(T.F[T] × G[T]))
Proof
Definitions occuring in Statement : 
destructor: destructor{i:l}(T.F[T])
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
destructor: destructor{i:l}(T.F[T])
, 
all: ∀x:A. B[x]
, 
decomp: decomp{i:l}(S.F[S];T;x)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
ap-con: ap-con(con;L)
, 
constructor: Constr(T.F[T])
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
le: A ≤ B
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
Lemmas referenced : 
istype-universe, 
subtype_rel_wf, 
base_wf, 
destructor_wf, 
list_wf, 
ap-con_wf, 
firstn_wf, 
length_wf, 
nth_tl_wf, 
append_wf, 
firstn_append, 
subtype_rel_list, 
top_wf, 
sq_stable__le, 
non_neg_length, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
itermAdd_wf, 
int_formula_prop_less_lemma, 
int_term_value_add_lemma, 
istype-le, 
istype-less_than, 
firstn_all, 
nth_tl_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
rename, 
introduction, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
cut, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
inhabitedIsType, 
thin, 
because_Cache, 
lambdaEquality_alt, 
productElimination, 
sqequalRule, 
applyEquality, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
productIsType, 
universeIsType, 
setElimination, 
setIsType, 
instantiate, 
extract_by_obid, 
universeEquality, 
functionIsType, 
dependent_pairEquality_alt, 
productEquality, 
independent_pairEquality, 
dependent_set_memberEquality_alt, 
independent_isectElimination, 
Error :memTop, 
independent_pairFormation, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
voidElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality
Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (destructor\{i:l\}(T.F[T])  {}\mRightarrow{}  destructor\{i:l\}(T.G[T])  {}\mRightarrow{}  destructor\{i:l\}(T.F[T]  \mtimes{}  G[T]))
Date html generated:
2020_05_20-AM-08_17_45
Last ObjectModification:
2020_01_28-AM-08_30_14
Theory : general
Home
Index