Nuprl Lemma : destructor-product

[F,G:Type ⟶ Type].  (destructor{i:l}(T.F[T])  destructor{i:l}(T.G[T])  destructor{i:l}(T.F[T] × G[T]))


Proof




Definitions occuring in Statement :  destructor: destructor{i:l}(T.F[T]) uall: [x:A]. B[x] so_apply: x[s] implies:  Q function: x:A ⟶ B[x] product: x:A × B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q member: t ∈ T destructor: destructor{i:l}(T.F[T]) all: x:A. B[x] decomp: decomp{i:l}(S.F[S];T;x) so_apply: x[s] so_lambda: λ2x.t[x] ap-con: ap-con(con;L) constructor: Constr(T.F[T]) subtype_rel: A ⊆B uimplies: supposing a int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q sq_stable: SqStable(P) ge: i ≥  decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: squash: T
Lemmas referenced :  istype-universe subtype_rel_wf base_wf destructor_wf list_wf ap-con_wf firstn_wf length_wf nth_tl_wf append_wf firstn_append subtype_rel_list top_wf sq_stable__le non_neg_length decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma istype-le istype-less_than firstn_all nth_tl_append
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt rename introduction sqequalHypSubstitution isect_memberEquality_alt cut isectElimination hypothesisEquality equalityTransitivity equalitySymmetry hypothesis inhabitedIsType thin because_Cache lambdaEquality_alt productElimination sqequalRule applyEquality equalityIstype dependent_functionElimination independent_functionElimination productIsType universeIsType setElimination setIsType instantiate extract_by_obid universeEquality functionIsType dependent_pairEquality_alt productEquality independent_pairEquality dependent_set_memberEquality_alt independent_isectElimination Error :memTop,  independent_pairFormation natural_numberEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality voidElimination imageMemberEquality baseClosed imageElimination addEquality

Latex:
\mforall{}[F,G:Type  {}\mrightarrow{}  Type].
    (destructor\{i:l\}(T.F[T])  {}\mRightarrow{}  destructor\{i:l\}(T.G[T])  {}\mRightarrow{}  destructor\{i:l\}(T.F[T]  \mtimes{}  G[T]))



Date html generated: 2020_05_20-AM-08_17_45
Last ObjectModification: 2020_01_28-AM-08_30_14

Theory : general


Home Index