Nuprl Lemma : fun-connected-step
∀[T:Type]. ∀f:T ⟶ T. ∀x:T.  (Dec((f x) = x ∈ T) ⇒ f x is f*(x))
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x), 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
fun-connected: y is f*(x), 
decidable: Dec(P), 
or: P ∨ Q, 
member: t ∈ T, 
prop: ℙ, 
exists: ∃x:A. B[x], 
fun-path: y=f*(x) via L, 
top: Top, 
subtract: n - m, 
last: last(L), 
select: L[n], 
cons: [a / b], 
and: P ∧ Q, 
cand: A c∧ B, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
guard: {T}, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
sq_type: SQType(T)
Lemmas referenced : 
decidable_wf, 
equal_wf, 
cons_wf, 
nil_wf, 
length_of_cons_lemma, 
length_of_nil_lemma, 
reduce_hd_cons_lemma, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
select_wf, 
int_seg_wf, 
fun-path_wf, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
decidable__le, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
functionEquality, 
universeEquality, 
dependent_pairFormation, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
independent_isectElimination, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
addEquality, 
instantiate, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}x:T.    (Dec((f  x)  =  x)  {}\mRightarrow{}  f  x  is  f*(x))
Date html generated:
2018_05_21-PM-07_44_53
Last ObjectModification:
2017_07_26-PM-05_22_25
Theory : general
Home
Index