Nuprl Lemma : fun-path_wf

[T:Type]. ∀[f:T ⟶ T]. ∀[x,y:T]. ∀[L:T List].  (x=f*(y) via L ∈ ℙ)


Proof




Definitions occuring in Statement :  fun-path: y=f*(x) via L list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  fun-path: y=f*(x) via L uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top assert: b ifthenelse: if then else fi  btrue: tt less_than': less_than'(a;b) cons: [a b] bfalse: ff so_lambda: λ2x.t[x] int_seg: {i..j-} guard: {T} lelt: i ≤ j < k so_apply: x[s]
Lemmas referenced :  less_than_wf length_wf equal_wf hd_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf last_wf list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma false_wf all_wf int_seg_wf subtract_wf select_wf int_seg_properties decidable__lt itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma not_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis because_Cache independent_isectElimination dependent_functionElimination unionElimination imageElimination productElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll promote_hyp hypothesis_subsumption lambdaFormation setElimination rename applyEquality functionExtensionality addEquality equalityTransitivity equalitySymmetry axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x,y:T].  \mforall{}[L:T  List].    (x=f*(y)  via  L  \mmember{}  \mBbbP{})



Date html generated: 2018_05_21-PM-07_42_51
Last ObjectModification: 2017_07_26-PM-05_20_52

Theory : general


Home Index