Nuprl Lemma : power-type_wf

[T:Type]. ∀[k:ℕ].  ((T^k) ∈ Type)


Proof




Definitions occuring in Statement :  power-type: (T^k) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: power-type: (T^k) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt decidable: Dec(P) or: P ∨ Q
Lemmas referenced :  nat_wf eq_int_wf ifthenelse_wf int_term_value_subtract_lemma int_formula_prop_not_lemma itermSubtract_wf intformnot_wf subtract_wf decidable__le unit_wf2 less_than_wf ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality equalityTransitivity equalitySymmetry unionElimination instantiate universeEquality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}[k:\mBbbN{}].    ((T\^{}k)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-06_05_49
Last ObjectModification: 2016_01_16-PM-00_42_57

Theory : general


Home Index