Nuprl Lemma : proof-abort_wf

[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[s:Sequent]. ∀[r:Rule].
  proof-abort(s;r) ∈ proof-tree(Sequent;Rule;effect) supposing ↑isr(effect <s, r>)


Proof




Definitions occuring in Statement :  proof-abort: proof-abort(s;r) proof-tree: proof-tree(Sequent;Rule;effect) list: List assert: b isr: isr(x) uimplies: supposing a uall: [x:A]. B[x] unit: Unit member: t ∈ T apply: a function: x:A ⟶ B[x] pair: <a, b> product: x:A × B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: subtype_rel: A ⊆B proof-abort: proof-abort(s;r) all: x:A. B[x] implies:  Q isr: isr(x) assert: b ifthenelse: if then else fi  bfalse: ff false: False btrue: tt ext-eq: A ≡ B and: P ∧ Q
Lemmas referenced :  assert_wf isr_wf list_wf unit_wf2 int_seg_wf length_wf equal_wf proof-tree_wf false_wf true_wf proof-tree-ext
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry extract_by_obid isectElimination thin hypothesisEquality applyEquality independent_pairEquality isect_memberEquality because_Cache functionEquality productEquality unionEquality universeEquality dependent_pairEquality lambdaFormation unionElimination natural_numberEquality voidEquality dependent_functionElimination independent_functionElimination voidElimination functionExtensionality productElimination

Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].  \mforall{}[s:Sequent].  \mforall{}[r:Rule].
    proof-abort(s;r)  \mmember{}  proof-tree(Sequent;Rule;effect)  supposing  \muparrow{}isr(effect  <s,  r>)



Date html generated: 2019_10_15-AM-11_06_19
Last ObjectModification: 2018_08_21-PM-01_58_14

Theory : general


Home Index