Nuprl Lemma : proof-abort_wf
∀[Sequent,Rule:Type]. ∀[effect:(Sequent × Rule) ⟶ (Sequent List?)]. ∀[s:Sequent]. ∀[r:Rule].
  proof-abort(s;r) ∈ proof-tree(Sequent;Rule;effect) supposing ↑isr(effect <s, r>)
Proof
Definitions occuring in Statement : 
proof-abort: proof-abort(s;r)
, 
proof-tree: proof-tree(Sequent;Rule;effect)
, 
list: T List
, 
assert: ↑b
, 
isr: isr(x)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
product: x:A × B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
proof-abort: proof-abort(s;r)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
isr: isr(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
false: False
, 
btrue: tt
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
Lemmas referenced : 
assert_wf, 
isr_wf, 
list_wf, 
unit_wf2, 
int_seg_wf, 
length_wf, 
equal_wf, 
proof-tree_wf, 
false_wf, 
true_wf, 
proof-tree-ext
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
independent_pairEquality, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
productEquality, 
unionEquality, 
universeEquality, 
dependent_pairEquality, 
lambdaFormation, 
unionElimination, 
natural_numberEquality, 
voidEquality, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
functionExtensionality, 
productElimination
Latex:
\mforall{}[Sequent,Rule:Type].  \mforall{}[effect:(Sequent  \mtimes{}  Rule)  {}\mrightarrow{}  (Sequent  List?)].  \mforall{}[s:Sequent].  \mforall{}[r:Rule].
    proof-abort(s;r)  \mmember{}  proof-tree(Sequent;Rule;effect)  supposing  \muparrow{}isr(effect  <s,  r>)
Date html generated:
2019_10_15-AM-11_06_19
Last ObjectModification:
2018_08_21-PM-01_58_14
Theory : general
Home
Index