Nuprl Lemma : reducible-nat

n:ℤreducible(n)  (∃n1:ℕ(n1 < n ∧ (2 ≤ n1) ∧ (n1 n))) supposing 2 ≤ n


Proof




Definitions occuring in Statement :  reducible: reducible(a) divides: a nat: less_than: a < b uimplies: supposing a le: A ≤ B all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False uall: [x:A]. B[x] prop: reducible: reducible(a) exists: x:A. B[x] int_nzero: -o decidable: Dec(P) or: P ∨ Q nat: nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top cand: c∧ B iff: ⇐⇒ Q gt: i > j rev_implies:  Q divides: a guard: {T}
Lemmas referenced :  int_formula_prop_or_lemma intformor_wf decidable__or int_term_value_minus_lemma itermMinus_wf mul_preserves_le equal_wf assoced_elim decidable__equal_int int_formula_prop_eq_lemma int_term_value_mul_lemma int_formula_prop_less_lemma intformeq_wf itermMultiply_wf intformless_wf decidable__lt pos_mul_arg_bounds divides_wf less_than_wf and_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt int_nzero_properties decidable__le le_wf reducible_wf less_than'_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality lambdaEquality dependent_functionElimination hypothesisEquality voidElimination lemma_by_obid isectElimination natural_numberEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry rename intEquality setElimination unionElimination dependent_pairFormation dependent_set_memberEquality independent_isectElimination int_eqEquality isect_memberEquality voidEquality independent_pairFormation computeAll independent_functionElimination because_Cache inlFormation minusEquality multiplyEquality inrFormation

Latex:
\mforall{}n:\mBbbZ{}.  reducible(n)  {}\mRightarrow{}  (\mexists{}n1:\mBbbN{}.  (n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n)))  supposing  2  \mleq{}  n



Date html generated: 2016_05_15-PM-04_02_33
Last ObjectModification: 2016_01_16-AM-11_02_34

Theory : general


Home Index