Nuprl Lemma : reducible-nat
∀n:ℤ. reducible(n) 
⇒ (∃n1:ℕ. (n1 < n ∧ (2 ≤ n1) ∧ (n1 | n))) supposing 2 ≤ n
Proof
Definitions occuring in Statement : 
reducible: reducible(a)
, 
divides: b | a
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
reducible: reducible(a)
, 
exists: ∃x:A. B[x]
, 
int_nzero: ℤ-o
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
cand: A c∧ B
, 
iff: P 
⇐⇒ Q
, 
gt: i > j
, 
rev_implies: P 
⇐ Q
, 
divides: b | a
, 
guard: {T}
Lemmas referenced : 
int_formula_prop_or_lemma, 
intformor_wf, 
decidable__or, 
int_term_value_minus_lemma, 
itermMinus_wf, 
mul_preserves_le, 
equal_wf, 
assoced_elim, 
decidable__equal_int, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_less_lemma, 
intformeq_wf, 
itermMultiply_wf, 
intformless_wf, 
decidable__lt, 
pos_mul_arg_bounds, 
divides_wf, 
less_than_wf, 
and_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
int_nzero_properties, 
decidable__le, 
le_wf, 
reducible_wf, 
less_than'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairEquality, 
lambdaEquality, 
dependent_functionElimination, 
hypothesisEquality, 
voidElimination, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
intEquality, 
setElimination, 
unionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
independent_isectElimination, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
because_Cache, 
inlFormation, 
minusEquality, 
multiplyEquality, 
inrFormation
Latex:
\mforall{}n:\mBbbZ{}.  reducible(n)  {}\mRightarrow{}  (\mexists{}n1:\mBbbN{}.  (n1  <  n  \mwedge{}  (2  \mleq{}  n1)  \mwedge{}  (n1  |  n)))  supposing  2  \mleq{}  n
Date html generated:
2016_05_15-PM-04_02_33
Last ObjectModification:
2016_01_16-AM-11_02_34
Theory : general
Home
Index