Step
*
1
2
of Lemma
rel-immediate-rel-plus
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T. ((R x y)
⇒ f x < f y)
5. ∀x,y:T. Dec(∃z:T. ((R x z) ∧ (R z y)))
6. n : ℕ
7. ∀n:ℕn. (0 < n
⇒ (∀x,y:T. ((R^n x y)
⇒ (∃n:ℕ+. (R!^n x y)))))
8. 0 < n
9. x : T
10. y : T
11. ∃z:T. ((x R z) ∧ (z R^n - 1 y))
12. ¬(n = 1 ∈ ℤ)
⊢ ∃n:ℕ+. (R!^n x y)
BY
{ xxx(ExRepD
THEN ((InstHyp [⌜1⌝; ⌜x⌝; ⌜z⌝] 7)⋅
THENA (Auto' THEN RepeatFor 2 ((RecUnfold `rel_exp` 0 THEN Reduce 0)) THEN (InstConcl [⌜z⌝])⋅ THEN Auto)
)
THEN ((InstHyp [⌜n - 1⌝; ⌜z⌝; ⌜y⌝] 7)⋅ THENA Auto'))xxx }
1
1. [T] : Type
2. [R] : T ⟶ T ⟶ ℙ
3. f : T ⟶ ℕ
4. ∀x,y:T. ((R x y)
⇒ f x < f y)
5. ∀x,y:T. Dec(∃z:T. ((R x z) ∧ (R z y)))
6. n : ℕ
7. ∀n:ℕn. (0 < n
⇒ (∀x,y:T. ((R^n x y)
⇒ (∃n:ℕ+. (R!^n x y)))))
8. 0 < n
9. x : T
10. y : T
11. z : T
12. x R z
13. z R^n - 1 y
14. ¬(n = 1 ∈ ℤ)
15. ∃n:ℕ+. (R!^n x z)
16. ∃n:ℕ+. (R!^n z y)
⊢ ∃n:ℕ+. (R!^n x y)
Latex:
Latex:
1. [T] : Type
2. [R] : T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}
3. f : T {}\mrightarrow{} \mBbbN{}
4. \mforall{}x,y:T. ((R x y) {}\mRightarrow{} f x < f y)
5. \mforall{}x,y:T. Dec(\mexists{}z:T. ((R x z) \mwedge{} (R z y)))
6. n : \mBbbN{}
7. \mforall{}n:\mBbbN{}n. (0 < n {}\mRightarrow{} (\mforall{}x,y:T. ((rel\_exp(T; R; n) x y) {}\mRightarrow{} (\mexists{}n:\mBbbN{}\msupplus{}. (rel\_exp(T; R!; n) x y)))))
8. 0 < n
9. x : T
10. y : T
11. \mexists{}z:T. ((x R z) \mwedge{} (z rel\_exp(T; R; n - 1) y))
12. \mneg{}(n = 1)
\mvdash{} \mexists{}n:\mBbbN{}\msupplus{}. (rel\_exp(T; R!; n) x y)
By
Latex:
xxx(ExRepD
THEN ((InstHyp [\mkleeneopen{}1\mkleeneclose{}; \mkleeneopen{}x\mkleeneclose{}; \mkleeneopen{}z\mkleeneclose{}] 7)\mcdot{}
THENA (Auto'
THEN RepeatFor 2 ((RecUnfold `rel\_exp` 0 THEN Reduce 0))
THEN (InstConcl [\mkleeneopen{}z\mkleeneclose{}])\mcdot{}
THEN Auto)
)
THEN ((InstHyp [\mkleeneopen{}n - 1\mkleeneclose{}; \mkleeneopen{}z\mkleeneclose{}; \mkleeneopen{}y\mkleeneclose{}] 7)\mcdot{} THENA Auto'))xxx
Home
Index