Nuprl Lemma : split-at-first
∀[T:Type]. ∀[P:T ⟶ ℙ].
  ((∀x:T. Dec(P[x]))
  ⇒ (∀L:T List. ∃X,Y:T List. ((L = (X @ Y) ∈ (T List)) ∧ (∀x∈X.¬P[x]) ∧ P[hd(Y)] supposing ||Y|| ≥ 1 )))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x]), 
hd: hd(l), 
length: ||as||, 
append: as @ bs, 
list: T List, 
decidable: Dec(P), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s], 
ge: i ≥ j , 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
top: Top, 
so_apply: x[s], 
append: as @ bs, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
cand: A c∧ B, 
uimplies: b supposing a, 
ge: i ≥ j , 
le: A ≤ B, 
not: ¬A, 
false: False, 
less_than': less_than'(a;b), 
true: True, 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_induction, 
exists_wf, 
list_wf, 
equal_wf, 
append_wf, 
length_wf, 
length-append, 
all_wf, 
decidable_wf, 
nil_wf, 
list_ind_nil_lemma, 
length_of_nil_lemma, 
l_all_nil, 
less_than'_wf, 
ge_wf, 
equal-wf-base-T, 
l_all_wf2, 
not_wf, 
l_member_wf, 
hd_wf, 
cons_wf, 
length_of_cons_lemma, 
reduce_hd_cons_lemma, 
list_ind_cons_lemma, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
l_all_cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
productEquality, 
applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
rename, 
dependent_functionElimination, 
applyEquality, 
functionExtensionality, 
functionEquality, 
universeEquality, 
independent_pairFormation, 
productElimination, 
independent_pairEquality, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
setElimination, 
setEquality, 
isectEquality, 
independent_isectElimination, 
dependent_pairFormation, 
unionElimination, 
addEquality, 
imageElimination, 
equalityUniverse, 
levelHypothesis, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x:T.  Dec(P[x]))
    {}\mRightarrow{}  (\mforall{}L:T  List.  \mexists{}X,Y:T  List.  ((L  =  (X  @  Y))  \mwedge{}  (\mforall{}x\mmember{}X.\mneg{}P[x])  \mwedge{}  P[hd(Y)]  supposing  ||Y||  \mgeq{}  1  )))
Date html generated:
2018_05_21-PM-07_40_09
Last ObjectModification:
2017_07_26-PM-05_14_18
Theory : general
Home
Index